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A finite element simulation of the flow in a channel with an abrupt contraction is
presented. The effects of the shear and elongational viscosities of a polymer on the
entrance flow are analyzed employing a truncated power-law model. The power-law
index and the strain rate characterizing the transition from Newtonian to power-law
behavior for the elongational viscosity are treated as being independent of the
values of these two parameters for the shear viscosity. The effect of flow rate on
entrance flow is also analyzed. It is confirmed that the Trouton ratio is important
in determining the recirculating vortex and the extra pressure loss in entrance flow.
Extra pressure loss and vortex length predicted by a finite element simulation of
entrance loss are compared with the corresponding predictions from Binding's

approximate analysis.

INTRODUCTION

n contrast to low molecular weight fluids, which can

be characterized by the Newtonian constitutive equa-
tion, polymeric fluids exhibit complex rheological be-
havior such as strain-rate-dependent shear viscosity,
high resistance to elongational deformation, normal
stresses in shear flow and memory of its previous con-
figurations during a deformnation (1). Depending upon
the type of flow, different constitutive approaches have
been used in the literature to model the rheology of
polymers. For instance, in many applications involv-
ing shear-dominated flows, such as injection molding,
a generalized Newtonian constitutive equation with
shear-thinning viscosity has been successfully em-
ploved {2-4). However, in applications involving elon-
gational flow, such as extrusion dies, predictions from
a generalized Newtonian formulation can be quite dif-
ferent from the real polymeric flow. Therefore, use of a
constifutive equation which can predict shear as well
as elongational viscosity is required for an accurate
simulation of such flows. To alleviate the limitations of
generalized Newtonian models, many different visco-
elastic constitutive equations have been proposed in
the literature (3). Even though many of the viscoelas-
tic constitutive equations can qualitatively predict the
phenomena such as die swell and recirculation during
creeping flow in a channel with abrupt contraction,
the predictions from these equations are not always in
good quantitative agreement with the corresponding
experimental data (6-14). Furthermore, use of a visco-
elastic constitutive equation requires the values of vari-
ous parameters such as relaxation time and viscosity

for various modes in the constitutive equation. Since
experimental determination of elongational viscosity is
difficult at high strain rates, various parameters in a
viscoelastic constitutive equation are often determined
by fitting the viscosity and normal stress coefficient
vs. strain rate data in a shear flow. However, if the
viscoelastic parameters are determined by fitting only
the shear properties, the constitutive equation may
not accurately predict the elongational behavior of the
polymer. Moreover, most of the numerical schemes for
simulating viscoelastic flows fail to converge at high
strain rates. Even though significant progress has
been made in the last decade towards identification of
underlying causes for divergence of simulation and to-
wards development of stable numerical schemes, con-
vergence of a viscoelastic flow simulation is still not
guaranteed, Because of these difficulties, viscoelastic
flow simulation of polymeric flows is rarely employed
to resolve industrial problems.

In the present work, a software for simulation of
axisymmetric polymeric flows has been developed. Be-
sides shear viscosity, this software requires a knowl-
edge of the strain-rate dependence of the elongational
viscosity of the polymer. In applications involving
significant elongational flow, this software can accu-
rately predict the velocity and pressure fields in the
flow. However, the constitutive equation employed in
the software does not predict normal stresses in shear
flow. Therefore, if normal stresses in shear flow are
important to capture the physics of the problem of
interest, such as die swell, predictions from this sofi-
ware may not be very accurate. This paper uses the
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newly developed software to analyze the effect of elon-
gational viscosity on the recirculating vortices and
pressure drop in an axisynmunetric channel with abrupt
coniraction. Corresponding software packages for pla-
nar and three-dimensional polymeric flows, which are
being currently developed, will be reported in the near
future.

SHEAR AND ELONGATIONAL
VISCOSITIES OF A POLYMER

For axisymmetric flow, the shear and elongational
viscosities are defined respectively as follows:

TI'Z = nsﬁ (1)

Tzz = Ter = Tleé (2)

where 7_ denotes various components of the stress
tensor, 7, and 7, are, respectively, the shear and elon-
gational viscosities, with y and & being the correspond-
ing strain rates.

The shear and elongational viscosities of a Newton-
ian fluid are constant. For an axisymmetric flow of
a Newtonian fluid, the Trouton ratio (Tr = =_/v,) is 3.
For polymers, shear and elongational viscosities de-
pend upon strain rate. At low values of strain rate, the
shear and elongational viscosities of a polymer are
typically constant. For axisymmetric flow, the Trouton
ratio for the zero-strain-rate shear and elongational
viscosities of a polymer is generally 3. As the strain rate
is increased beyond the Newtonjan limit, the shear
viscosity of a polymer decreases with increasing strain
rate, whereas the elongational viscosity may actually
increase followed by a decrease as the strain rate is
further increased. This is illustrated for LDPE by the re-
sults from Luan and Schuch (15), reproduced in Fig. 1.
For HDPE and polystyrene, the initial increase in the
elongational viscosity beyond the Newtonian limit was
not observed {16-18), whereas for polyisobutylene-
isoperene copolymer the elongational viscosity has been
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Fig. 1. Shear and elongational viscosities of LDPES (15),

found to be a constant independent of strain rate (19).
More complex behavior, such as a second increase in
elongational viscosity beyond the strain-thinning re-
gion, has also been observed for some polymers (20).

For generalized Newtonian fluids, the shear viscos-
ity is represented as a function of the second invari-
ant of the strain rate tensor:

Ms = Ns(en)

where ey = V2(e:€), € = (Vi + ViT)/2 is the strain-
rate tensor and ¥ is the velocity vector. In the present
work, elongational viscosity has also been represented
as a function of e; as defined above. It should be
noted that for simple shear flow, e; = v, whereas for

axisymmetric elongational flow, e; = V'3 5. In the lit-
crature, v, is generally specified as a function of ¢ and
not that of e;. However, if n,, as well as 7., are both
specified as functions of eg, it can be easily shown
that, irrespective of the strain rate, n, = 37, for axi-
symmetric flow of all generalized Newtonian fluids.
Instead of focussing on a specific polymer, the goal
of this paper is to examine the effect of elongational
viscosity on entrance flow. As shown in Fig. 2, the
shear as well as elongational viscosities have been
represented by the truncated power-law model:

M = Aej ! forep > e, mo=moforez=e, (3)
and
me = Bel ! foreg > e, m.=3ngfore;=e. (4)

However, the power-law indices as well as the strain
rates for transition from Newtonian to power-law
behavior can be different for the shear and elonga-
tional viscosities. Power-law model has been used by
many authors in the recent literature (21-29) to rep-
resent the shear and elongational viscosities of poly-
mers. Elongational viscosity for many polymers such
as HDPE (16, 17) and polystyrene (18) can be accurately

elongation
Me= Beuml

shear

.= Aes:ﬂ

1
€, ]

lIog (e,)

Fig. 2. Truncated power-law model for shear and elonga-
tional viscosities.
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represented by a truncated power-law model. How-
ever, the initial increase in elongational viscosity be-
yond the Newtonian region, which is exhibited by some
polymers such as LDPE (15), cannot be addressed by
the truncated power-law model. Because of its sim-
plicity, and feasibility of separating the effects of elon-
gational viscosity parameters m and e, on polymeric
flows, the truncated power-law model has been used
in the present work. However, our software can be
used with any other model specifying the strain-rate
dependence of shear and elongational viscosities. It is
noted that for m = nand e; = e, the model given by
Egs 3 and 4 is identical to a purely viscous general-
ized Newtonian formulation for a truncated power-law
meodel with power-law index and Newtonian limit of rn
and e, respectively, The effect of power-law index (m)
and that of the Newtonian limit {e,) for elongational
viscosity on entrance flow are analyzed later in the
paper. For constant shear and elongational viscosity
parameters, the effect of flow rate on entrance flow is
also analyzed.

ENTRANCE FLOW

The {low near an abrupt contraction in a channel
(enirance flow) is highly extension dominated. There-
fore, entrance flow is a good benchmark test for ana-
Iyzing the effect of elongational viscosity on polymeric
flows. Besides being a good test case, entrance flow is
often encountered in polymer-processing applications,
such as extrusion dies and the runners in injection
molding. Axisymmetric entrance flow of polymers as
well as that of Newtonian fluids has been investigated
extensively in the literature. For Newtonian fluids it
has been established experimentally and by numeri-
cal simulation that the main cause of a recirculating
vortex near the abrupt contraction is the fluid inertia.
In contrast, for creeping flow of polymers, it has been
experimentally demonstrated by many researchers
that a recirculating vortex is found near the abrupt
contraction, which can grow significantly with the
flow rate in the channel (30-33). Furthermore, at cer-
tain flow rates, experiments have shown the forma-
tion of a second vortex, called lip vortex, near the
entrant comer. In comparison with axisymimetric flow,
a weaker vortex enhancement is found for planar
entrance flow and formation of a lip vortex is rare
(34-36). Only axisymmetric entrance flow has been
analyzed in this paper. Similar investigation of a pla-
nar entrance flow will be presented in the near future.

Since the flow near an abrupt contraction is highly
extension dominated, in addition to the pressure drop
for fully developed flow in the upstream and down-
stream channels, an extra pressure loss is encoun-
tered in the entrance flow. Because of the high elonga-
tonal viscosity of polymers, this extra pressure loss,
called the entrance loss, can be particularly large for
polymers. A good review on the effect of elongational
properties of a polymer on entrance flow can be found
in White et al. (31). By separately calculating the pres-
sure drop due to shear and elongational flow near an

abrupt contraction, Cogswell (21} developed analytical
expressions {or an approximate calculation of entrance
loss in a fluid with different power-law indices for shear
and elongational viscositics. Such approximate ex-
pressions for entrance loss have been further refined
in the recent literature by other resecarchers (22-27).
In particular, Binding (25) employed energy principles
to relate the entrance loss and vortex length in an
entrance {low to the flow ratec and the shear and elon-
gational viscasities of polymer. Binding used inde-
pendent power-law models to represent the shear and
elongational viscosities. However, for sake of mathe-
matical simplicity, the power-law models were not
truncated at the lower strain rates. Therefore, at low
strain rates, Trouton ratio may not be 3 in Binding's
analysis. Ignoring this minor difference in the two
rheological models, later in this section, for a 4:1 en-
trance flow, the extra pressure loss and vortex length
predicted by a finite element simulation with the ttun-
cated power-law model for shear and elongational vis-
cosities are compared with the corresponding values
computed by using the analytical expressions devel-
oped by Binding (25}.

Instead of an approximate calculation of entrance
loss, in the present work the effect of shear and elon-
gational viscosities of polymeric fluids has been accu-
rately captured in the constitutive equation used for
the flow simulation. Even though in this paper the
present finite-element software has been used solely
to simulate a 4:1 entrance flow, the constitutive the-
ory employed is frame invariant and the software is
capable of simulating any complex axisymmetric poly-
meric flow, The effects of flow rate and elongational
viscosity on entrance loss are analyzed later in this
paper. The entrance loss is expressed in terms of an
equivalent length of the downstream channel:

_ Ap — Ap, — Ap,
9p;

where Ap is the total pressure drop in the entrance
flow, Ap, and Ap, are, respectively, the pressure drop
for fully developed flow in the portions of the channel
upstream and downstream of the abrupt contraction,
and dp, is the magnitude of the fully developed axial
pressure gradient in the downstream channel. The
Trouton ratio for the strain rate at the down stream
wall has been used to characterize the flow. The finite-
element simulations presented later in the paper show
that the Trouton ratio plays an important role in de-
termining the recirculating vortex and extra pressure
loss in entrance flow.

L, 5)

Convergence With Mesh Refinement

To check the convergence of the numerical simula-
tion, a 4:1 axisymmetric entrance flow was simulated
by three successively refined finite element meshes
shown in Fig. 3. The lengths of the upstream and
downstream channels have been-taken as 20R, and
30R,, respectively, where R, is the radius of the down-
stream channel. Along with the symmetry condition
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Mesh A

Mesh B
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Fig. 3. Successively refined finite-element meshes used for
simulating 4:1 axisymmetric entrance flow. In terms of the ra-
dius of the downstream channel, R,, the length of the up-
stream and downstream channels are 20R; and 30R,, re-
spectively. Beyond the portion of the flow domain shown, the
[finite-element length along the flow direction continues to in-
crease in the upstream and downstream sections in the three
meshes.

along the axis and no-slip condition along the wall, a
fully developed flow was specified at the entrance and
the exit. For the three successively refined meshes,
Figs. 4 and 5 show the velocity and pressure along
the axis of symmetry for power-law indices n = 0.25,
m = 0.5, Newtonian limits e, = ¢; = 0.001 57! and for
the average strain rate in the downstream channel
Yo = U/Ry = 1571, where U is the average velocity in
the downstream channel. In Figs. 4 and 5, z/R, = 0
corresponds to the abrupt contraction. Away from
the abrupt contraction, the velocity and pressure
predicted by meshes B and C are almost identical,
confirming the convergence with respect to mesh re-
finement. Mesh C has been used for all the flow simu-
lations presented later in this paper. Near the abrupt
contraction in Fig. 5, the pressure along the center
line shows some fluctuations, which diminish as the
mesh is refined. The center-line velocily in Fig. 4
shows a kink at the abrupt contraction. Beyond the
kink at the abrupt contraction, the center-line velocity
increases monotonously to approach the value for a
fully developed flow in the downstream channel. It is
noted that the predicted development of center-line
velocity in Fig. 4 is quite different from the velocity
development predicted by the viscoelastic flow sim-
ulations reported in the literature. Such simulations

predict an overshoot in the center-line velocity near
the abrupt contraction, before it decreases to its value
for a fully developed flow (7-14). Since most visco-
elastic constitutive equations include the effect of high
elongational viscosity as well as that of the normal
siresses in a shear flow of polymers, whereas the cur-
rent work does not capture the normal stresses in a
shear flow, a difference between the development of
center-line velocity predicted in the present work and
the development predicted by viscoelastic flow simu-
lations in the literature is not completely unexpected.
However, in comparison with viscoelastic flow simula-
tons, a much weaker overshoot in center-line velocity
has been observed in the experimental work reported
int the literature. For instance, Azaiez et al. (37) found
that for flow of a polymer solution their center-line ve-
locity prediction based upon a viscoelastic flow sim-
ulation indicated a much larger overshoot than the
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Fig. 4. Velocity along the axis of symmetry for n = 0.25,
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corresponding experimental results of Quinzani et al
(38). Also, the velocity overshoot predicted by vis-
coelastic flow simulation increases with flow rate (37),
whereas the velocity overshoot in the experimental
data of Quinzani et al. (38) seems to decrease with
flow rate.

Effect of Elongational Power-Law Index
on Entrance Flow

With the flow rate, Newlonian limits for the shear
and elongational viscosities, and power-lax index for
shear viscosity being constant [y, = 1s7%, n = 0.25,
e, = ¢, = 0.001s™1), Fig. 6 shows the effect of elonga-
tional power-law index (m) on recirculating vortex in
an axisymmetric 4:1 entrance flow. To depict the flow
direction, Fig. 6 shows the unit vectors along the di-
rection of velocity. It should be noted that near the
center of circulation of a vortex, or any other stagna-
tHon point, if the predicted velocity has the same order
of magnitude as the computational error, the direction
shown by the unit vectors in Fig. 6 may not be very
accurate. For m = 0.25, which corresponds to a purely
viscous generalized Newtonian formulation for the
truncated power-law model with n = 0.25, in Fig. 6 {(a}
no significant recirculating vortex is formed near the
abrupl contraction. As the elongational power-law
index is increased to m = 0.5 (Fig. 6 (b)), a small recir-
culating vortex is formed near the outside corner. It is
noted that two of the unit vectors near the entrant
corner are in the upstream direction. This indicates
that a lip vortex is about to form and the flow is al-
most stagnant near the two spurious unit vectors. For
m = 0.5, the magnitude of the normalized velocity,
where the normalization is with respect to the average
velocity in the downstream channel, predicted at the
location of the two spurious unit vectors is of the order
of 1073, which verifies the presence of a stagnation
point near the two spurious unit vectors. At m = 0.55
(Fig. 6 {c]), the corner vortex grows in size and a lip
vortex is also formed near the entrant corner. Again,
one of the unit vectors near the entrant corner in
Fig. 6 {d) is in the upstream direction. Similar spurious
unit vectors are present near the entrant corner in
some of the plots in Figs. 11 and I6. It has been veri-
fied that the magnitude of the velocity corresponding
to such spurious unit vectors near the point where
the lip vortex comes in contact with the wall is always
smaller than the computational accuracy of the sim-
ulation. A further increase in the value of m results
in a significant growth of the lip vortex. The comer
vortex also grows in size; however, the vortices remain
separate with two different centers of recirculation.
At m = 0.6 and above, the two vortices coalesce to-
gether, At m = 0.6, the center of recirculation is close
to that of the lip vortex. As the elongational power-
law index is further increased, the recirculating vor-
tex grows significantly and the center of recirculation
moves away from the entrant corner. For n = 0.25,
e, = e, = 0.001 s7F and v, = 157!, the entrance
flow simulation converged up to m = 0.75, which

corresponds to Tr = 251 (sec Appendix). Even though
the numerical simulation did not diverge, it failed to
converge for m> 0.75. In fact for these values of n, e,
e, and v,,, the numerical simulation failed to con-
verge for m > 0.75 even for flow in a tube without any
contraction. Apparently, at large values of the Trouton
ratio, even a small elongational flow due to computa-
tional errors in the predicted velocity field for a pure
shear flow can give rise to significant elongational
stresses. As the elongational stresses due (o the error
in the predicted velocity field start to dominate the
shear stresses, the flow simulation in a tube (with or
without a contraction) does not diverge, but fails to
converge to a specific value,

For various values of the elongational power-law
index, Fig. 7 shows the velocity along the axis of sym-
metry. For m = 0.25, which corresponds to the trun-
cated power-law model for a purely viscous general-
ized Newtonian fluid, a slight overshoot (0.56%) is
observed in the center-line velocity. This kink in the
center-line velocity is maintained as the elongational
power-law index is increased, however the kink oc-
curs at a lower normalized velocity and a longer dis-
tance is required to reach the fully developed velocity
profile.

The normalized pressure variation along the center
line for different values of m is shown in Fig. 8, where
the normalization is with respect to the shear stress
at the wall in the downstream channel. The corre-
sponding entrance loss is given in Fig. 9. The steep
drop in pressure near the abrupt contraction in Fig. 8,
which corresponds to the entrance loss in Fig. 9, is
seen to increase significantly with the elongational
power-law index. At m = 0.25, the predicted entrance
loss in terms of the equivalent length of the down-
stream channel L, is 1.42, which agrees well with the
value reported in the literature {39-43) for a purely
viscous generalized Newtonian formulation for power-
law model with power-law index n = 0.25. The en-
trance loss increases rapidly with m to a value of L, =
29.7 for m = 0.75. Figure 9 also shows the entrance
loss computed by using Binding’s approximate analy-
sis (25). In view of various simplifying assumptions in
Bindings analysis and the difference in the rheological
models at low strain rates, the agreement between the
entrance loss predicted by Binding's analytical method
and that by finite element flow simulation is quite
good. In particular, assuming a slow growth in the
radius of the recirculating vortex (R), that is, a large

dRr 2
vortex, Binding neglected the terms involving (E)

2

and Ez_i in the shear strain rate. However, for the

dR
simulations reported in Fig. 6, 4z for the recirculat-

ing vortex is greater than 1. To compare the vortex
size predicted by Binding’s analysis and that by the
finite element flow simulation, Fig. 10 shows the vari-
ation of vortex length (L) with power-law index. The
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axial distance between the abrupt contraction and the
farthest (from the contraction) node with a positive ve-
locity component in the upstream direction is taken
as the vortex length in the finite element simulation.
Even though the velocity and pressure field have con-
verged with respect to the mesh refinement (see Figs.
4 and 5), depending upon the location of nodes in the
finite element mesh, the vortex length was found to
change as much as 10% if mesh B in Fig. 3 is used in-
stead of mesh C. Therefore, in Fig. 10, the vortex
length predicted by finite element simulation, which
has been obtained by using mesh C, may have an
error as large as 109, It is evident from Fig. 10 that in
comparison to the vortex length predicted by finite el-
ement flow simulation, Binding's approximate analy-
sis predicts a much larger vortex length. The vortex
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Fig. 8. Pressure along the axis of symmetry for n = 0.25,
€ = e = 0.001 s7!, vy, = 1 s ! and various values of the
elongational power-latw index.
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Fig. 9. Entrance loss vs. m forn = 0.25, ¢; = e; = 0.00] 57!
and v, = 1s L

length in Binding's analysis is actually the length of
the upstream channel over which the flow is not fully
developed, which is generally much larger than the
vortex length.

Effect of Newtonian Limits

For constant values of the shear and elongational
power-law indices, a change in the strain rate corre-
sponding to the transition from Newtonian to power-
law behavior (e; and e, in Egs 3 and 4} will affect the
value of the Trouton ratio for all strain rates beyond
the Newtonian limits. In particular, if the Newtonian
limit for elongational viscosity (e,) is increased with a
fixed Newtonian limit for shear viscosity (), the value
of the Trouton ratio increases for any strain rate be-
yond e,. Therefore, for fixed power-law indices at a
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Fig. 10. Vortex length vs. m forn = 0.25, e, = e, = 0.00} 57!
and ¥, = 1575
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constant flow rate, as e, is increased, the recirculating
vortex and entrance loss in a channel with abrupt con-
traction are expected to increase. It should be noted
that a change in e; will also affect the value of B in
Eq 4. For power-law indices n = 0.25, m = 0.5, aver-
age strain rate in the downstream channel v, = 1571,
and Newtonian limits ¢ = ¢, = 0.001 s~1, a small
corner vortex is predicted, as is seen in Fig. 6 (b).
Keeping all other parameters the same as those for
Fig. 6 (b). as the Newtonian limit for elongational vis-
cosity (e,) is increased to 0.003 s}, as shown in Fig.
11 {a}, a lip vortex is predicted near the entrant corner
and the size of the corner vortex increases signifi-
cantly, A further increase in e, to 0.005 s~! (Fig. 11
{b}) not only enhances the lip and corner vortices, but
a third intermediate vortex is predicted between the
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lip and corner vortices. The intermediate vortex could
not be captured if a coarse mesh (mesh A or B in Fig,
3) is used for the simulation. To eliminate the possi-
bility of the intermediate vortex being a numerical ar-
tifact, for the same shear and elongational viscosity
parameters as those for Fig. 11 (b}, the 4:1 entrance
flow was simulated by using two successive refine-
ments of mesh C in Fig. 3. The intermediate vortex
was evident in the sirmulations with the finer finite ele-
ment meshes. This intermediate vortex is predicted
only for a narrow range of e,. As e, is increased to
0.006 s™! or decreased to 0.004 s~!, the intermediate
vortex disappears and only the lip and cormer vortices
are formed. Since the intermediate vortex is predicted
for an extremely narrow range of e, it would probabty
be difficult to capture experimentally. The author is

Fig. 11. Recirculation in 4:1 abrupt contraction for n = 0.25, m = 0.5, e; = 0.00I s 7 and v, = 1 s~ !. The elongational Newtonian

limit, e,, is {a) 0.003, {b) 0.005, {c} 0.01, {d) 0.03 s 1.
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Fig. 12. Velocity along the axis of symmetry for n = 0.25,
m= 0.5, ;= 0.001s 1, v, = 1s"! and various values of e;.

not aware of any previous reporting of such an inter-
mediate vortex in the literature for 4:1 entrance flow
of polymeric fluids. For e, = 0.01 571, in Fig. 11 {c} the
corner vertex is predicted to grow significantly, with
only a limited growth in the lip vortex. As ¢, is in-
creased beyond 0.01 s7!, further growth is predicted
in the corner vortex, whereas the lip vortex continues
to shrink, For e; = 0.03 571 (Fig. 11 (d}), the lip vortex
is restricted to a small region near the entrant corner.
For e, > 0.03 s™!, the simulation does not converge.
Far various values of e,, with all other parameters
fixed, Fig. 12 shows the velocity along the axis of sym-
metry. Similar to the effect of an increase in m on
the center-line velocity (Fig. 7), as e, is increased the
simulation indicates that the kink in the center-line
velocity occurs at a lower normalized velocity and a
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Fig. 13. Pressure along the axds of symmetry for n = 0.25,
m= 0.5, e; = 0.001 s, y,, = I s~} and various values of ;.
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Fig. 14. Entrance loss vs. e; forn = .25, m = 0.5, g, =
0.001 s~iandv,, = 1s L

longer distance is required for the velocity profile to
develop completely in the downstream channel. At
€; = 0.01 and 0.03 s~!, a slight waviness is found
in the center-line velocity. These minor fluctuations
in the center-line velocity at higher e,, are more pro-
nounced for the coarse mesh (A in Fig. 3) and decrease
successively with the finer meshes B and C. As men-
tioned before, the results in Fig. 12 have been obtained
by using Mesh C.

For various values of e,, the pressure variation along
the axis of symmetry and the corresponding entrance
loss are shown in Figs. 13 and 14, respectively. Be-
sides a fluctuation in the center-line pressure near
the abrupt contraction, at higher values of e, a slight
waviness is predicted in the center-line pressure in
the downstream channel, as indicated in Fig. 13. This
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Fig. 15. Vortex length vs. e; forn = 0.25, m = 0.5, ¢, =
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waviness in the center-line pressure at ¢, = 0.01 and
0.03 s™! is probably related to the waviness in the
center-line velocity at the same values of ¢, in Fig. 12.
Since the Trouton ratio increases as e, is increased
(sece Appendix), the entrance loss increases rapidly
with e,. The entrance loss calculated by using Bind-
ing's approximate analysis, which is also shown in
Fig. 14, is in reasonable agreement with the predic-
tions from the finite element flow simulation. How-
ever, the vortex length calculated by Binding's analy-
sis (Fig. 15) is much larger than the vortex length
predicted by the finite element flow simulation. As men-
tioned in the last section, the vortex length in Bind-
ing’s analysis is actually the length of upstream chan-
nel over which the flow is not fully developed, which is
generally much larger than the vortex length.

. e e el a = et e e L LM = mm= N
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- o N s
-~ t - n
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e ——

e
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Effect of Flow Rate

If all the parameters for the shear and elongational
viscosities are fixed and the power-law index for elon-
gational viscosity is larger than that for the shear
viscosity, then for e; > e, the value of the Trouton
ratio increases with strain rate. Therefore, the recircu-
lating vortex and entrance loss in an axisymmetric 4:1
entrance flow are expected to increase with flow rate.
For power-law indices n = 0.25, m = 0.5 and Newton-
ian limits e; = e; = 0.001 s~1, unit vectors along the
direction of velocity at various flow rates are shown in
Fig. 16. For these viscosity parameters, the unit vec-
tors for v, = 1 s~! have already been shown in Fig. 6
{b), which indicates that only a small corner vortex
is formed. In Fig. 16 (a}, a lip vortex is predicted at
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Fig. 16. Recirculation in 4:1 abrupt confraction forn = 0.25. m = 0.5, ¢, = e, = 0.001 s™!. The average strain rate in the down-

stream channel, v, Is (@) 10, (b} 40, (c) 200, (d) 1000 s 1,
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Fig. 17. Velocity along the axis of symmetry for n = 0.25, m
= 0.5, e; = e, = 0.001 s~ 7 and at various flow rates.
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Yoo = 10 s71. As the flow rate is increased further to
Yo = 40 87! [Fig. 16 (b)), the lip vortex is predicted to
grow significantly with only a minor growth in the cor-
ner vortex. At y,, = 40 s~1, the simulation indicates that
the lip vortex has grown beyond the center of rotation
of the corner vortex. However, beyond v, = 40 577, the
predicted corner vortex starts to grow and the lip vor-
tex begins to shrink. At y,, = 200 s~! (Fig. 16 (¢J}. the
lip and corner vortices are predicted to have distinct
centers of rotation. In Fig. 16 {c), the corner vortex has
grown significantly, whereas the lip vortex is now lim-
ited to a small region near the entrant corner. As v,,, is
increased beyond 200 s}, further growth is predicted
in the corner vortex, whereas the lip vortex continues
to shrink. At v, = 1000 s~ (Fig. 16 (d)), the lip vortex
is restricted to a small region near the entrant corner.
The simulation does not converge if v, is increased
beyond 1000 s~
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Fig. 18. Pressure along the axis of symmetry forn = 0.25, m
= 0.5, gy = e; = 0.001 s~ ! and at various flow rates.
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Fig. 19. Entrance loss vs. v, forn = 0.25, m = 0.5, ¢, = e,
= 0.001 s

For the same shear and elongational viscosity pa-
rameters as in Fig. 16, the velocity along the axis of
symmetry for various flow rates is shown in Fig. 17.
Similar to the effect of an increase in mand e, on the
center-line velocity (Figs. 7 and 12), the normalized
velocity at which the kink cceurs in the center-line
velocity is predicted to decrease as the flow rate is
increased and a longer distance is required for the
flow to develop compietely in the downstream chan-
nel. Since a downstream channel length of more than
30R; is required for the flow to develop completely at
Y = 1000 571, a flow domain with a downstream chan-
nel length of 60R, has been used for analyzing the
effect of flow rate on the 4:1 entrance flow. Between
zZ/R, = —20 and z/R, = 30, the finite-element mesh
used in the simulation is the same as mesh C in Fig.
3. Additional finite elements have been added between
z/R, = 30 and z/R, = 60 to increase the length of the
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Fig. 20. Vortex length vs. v, forn= 0.25, m = 0.5 and ¢, =
e, = 0.001 571,
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flow domain. At y,, = 100 and 1000 s~!, the center-
line velocity in the downstream channel has a slight
waviness, which is more pronounced for the coarse
finite element mesh (A in Fig. 3) and decreases as the
mesh is refined (meshes B and C in Fig. 3).

Figures 18 and 19, respectively, show the pressure
along the axis of symmetry and the corresponding en-
trance loss at various flow rates. The predicted center-
line pressure at y,, = 100 and 1000 s~! exhibits some
fluctuation near the abrupt contraction and a slight
waviness is evident in the pressure in the downstream
channel. The waviness in the center-line velocity (Fig.
17) and pressure (Fig. 18) at v,, = 100 and 1000 s~!
are probably correlated. The simulation indicates that
the entrance loss increases rapidly as the flow rate is
increased. The entrance loss predicted by Binding's
approximate analysis, which is also shown in Fig. 19,
is in reasonable agreement with the corresponding
predictions from the finite element flow simulation.
Figure 20 shows the variation in vortex length as the
flow rate is increased. Again, in comparison to the
vortex length predicted by finite element flow simula-
tion, Binding's analysis predicts a much larger vortex
length.

In closing this section, it should be noted that no
marching in the Trouton ratioc was required to obtain
convergence at the higher values of the Trouton ratio.
Even though the program never diverged, fluctuations
in velocity and pressure, which were observed at higher
e and Uin Figs. 12, 13, 17 and 18, increased at higher
values of the Trouton ratio. Because of these fluctua-
tions in velocity and pressure at higher Trouton ratios,
‘the program did not converge. It is evident from Figs.
9, I4 and 19 that the entrance flow simulation always
converged if the entrance loss in terms of the equiva-
lent length of the downstrearn channel, L, is less than
30. In the literature (44), for most polymers the exper-
imentally determined entrance loss in terms of L, is
less than 30. It should be noted that this paper ad-
dresscs the effect of steady state elongational viscosity
on entrance flow. The effects of normal stress differ-
ence and ransient behavior of elongational viscosity,
which can also affect the vortices and extra pressure
loss in entrance flow, have not been accounted in this
work.

CONCLUSIONS

A finite-element software for simulating axisymmet-
ric flow of polymers has been developed. The shear
and elongational viscosities of a polymer have been
represented by the truncated power-law model with
different power-law indices and Newtonian limits for
the two viscosities. The finite-element software has
been used to simulate the axisymmetric flow in a chan-
nel with 4:1 abrupt contraction, For constant values
of the shear-viscosity parameters, the effects of power-
law index and Newtonian limit of elongational viscosity
on the predicted recirculating vortex and extra pres-
sure loss in a 4:1 entrance flow have been analyzed.
Keeping the power-law indices and Newtonian limits

for the shear and elongation viscosities constant, the
effect of flow rate on the entrance flow has also been
analyzed. The recirculating vortex and exira pressure
loss in an entrance flow are found to increase signifi-
cantly with the Trouton ratio. The extra pressure loss
predicted by finite element flow simulation is in rea-
sonable agreement with the corresponding predictions
from Binding's approximate analysis. However, Bind-
ing's analysis predicts a much larger vortex length
than the vortex length predicted by finite element sim-
ulation of entrance flow.

APPENDIX

Value of the Trouton ratio at the downstream chan-
nel wall in a 4:1 abrupt contraction:

(a} Forn=0.25¢e,=¢ =00015 !, vy, ,=1s!

ay

m 025 0.35 0.45 0.55 0.65 0.75
™ 3.0 7.3 17.6 42,7 103.6 251.0

(b) For n = 0.25, m= 0.5, g; = 0.001 57!, 3, = 187!

e;(s”1) 0.001 0.003 0.005 0.01 0.02 0.03
Tr 274 475 614 86.8 122.7 1503

(b) Forn= 0.25, m= 0.5, e, = e, = 0.001 57!

Y87 0.1 1 10 100 1000
Tr 154 274 488 868 154.3
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