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Abstract

A finite element simulation of the flow in a rectangular
die with an abrupt contraction is presented. Effect of shear
and elongational viscosities of a polymer on the flow in the
die is analyzed. The shear and elongational viscosities are
represented by a truncated power-law model. The power-
law indices for the planar and axisymmetric elongational
viscosities are found to have significant effect on the pres-
sure and velocity fields in the die.

Introduction

Extrusion die determines the dimensions and quality of
the plastic extudate from a screw extruder. Therefore, use of
a well-designed extrusion die is essential to assure the qual-
ity of the extruded product. Design of an extrusion die
requires an analysis of the velocity as well as pressure field
for the polymeric flow inside the die [1]. For the desired
throughput, the pressure required at the die entrance should
not exceed the pressure available at the screw channel exit,
which depends upon the screw speed. Therefore, at a con-
stant screw speed, an excessively restrictive flow in the die
leads to a reduction in the throughput. Knowledge of the
pressure field in a die is also important for a robust mechan-
ical design of the die such that the internal pressure does
not cause any significant change in the flow channel dimen-
sions. The velocity field in an extrusion die should be such
that the average flow rate for any portion of the outlet cross-
section is the same. Also, to avoid stagnation and decompo-
sition of the extruded material, the velocity field should not
have any recirculating vortices.

To simulate the flow in extrusion dies, a generalized
Newtonian constitutive equation has generally been used in
the past [2-4]. A generalized Newtonian constitutive equa-
tion can accurately capture the shear-thinning behavior of
the viscosity of a polymer, however, the elongational vis-
cosity predicted by a generalized Newtonian model can be
quite different from that of the polymer. Therefore, in appli-
cations involving a significant elongational flow, such as
extrusion dies, the velocity and pressure fields predicted by
a generalized Newtonian formulation can have large error.
An accurate simulation of the flow in an extrusion die
requires a constitutive equation which can predict the shear
as well as elongational viscosity of a polymer. Even though
many of the viscoelastic constitutive equations can predict

the high elongational viscosity of polymers [5], difficulty in
convergence of viscoelastic flow simulation at high flo
rates [6-10] and that of finding the values of various param
eters in the constitutive equation has somewhat limited t
application of viscoelastic flow simulation.

In the present work, a software for three-dimension
simulation of polymeric flows has been developed. To sim
ulate a polymeric flow, this software accounts for the strai
rate dependence of shear as well as elongational viscos
of the polymer. This newly developed software has be
used in this paper to simulate the flow in a rectangular d
with abrupt contraction. Effect of elongational viscosity o
recirculating vortices and pressure drop in the rectangu
die is analyzed in this paper.

Shear and Elongational Viscosities of a
Polymer

The shear and elongational viscosities of a fluid a
defined as follows [11] :

(1)

(2)

where denotes various components of the stress ten

and are respectively, the shear and elongational v

cosities, with  and  being the corresponding strain rat
For a Newtonian fluid, the shear and elongational vi

cosities are independent of the strain rate. However t
elongational viscosity depends upon the elongation mo
defined by the parameterb in Eqn. (3) below. For a general

shear-free flow, the strain-rate tensor

where  is the velocity, can be written as follows:

(3)

For b = 0, which corresponds to an axisymmetric elong
tional flow, the shear and elongational viscosities of a Ne
tonian fluid satisfy the Trouton equation [11],

, (4)

whereas, for a planar elongational flow (b = 1), the corre-
sponding equation is,
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where and are the elongational viscosities for the

axisymmetric and planar cases, respectively.

The shear and elongational viscosities of a polymer
depend upon strain rate. At low values of strain rate, shear
and elongational viscosities of a polymer are constant. The
zero-strain-rate viscosities of a polymer also satisfy the
Trouton equations for axisymmetric and planar cases (Eqns.
4 and 5) [11]. Beyond the Newtonian limit, shear viscosity
of a polymer decreases with increasing strain rate, whereas,
for most polymers the elongational viscosity increases with
strain rate, which is followed by a descent as the strain rate
is further increased [12].

For generalized Newtonian fluids, shear viscosity is
represented as a function of the second invariant of the
strain rate tensor,

,

where . In the present work, the axisymmet-

ric and planar elongational viscosities have also been repre-
sented as functions of as defined above. It should be

noted that for a simple shear flow , whereas for an

elongational flow, for the axisymmetric case

and for the planar case . In the literature, and

are generally specified as functions of and not that of

. The approach used in this paper has unified the inde-

pendent variable for the shear and elongational viscosities.
Furthermore, with as the independent variable, irre-

spective of the strain rate, the Trouton equations for the axi-
symmetric and planar cases (Eqns. 4 and 5) are satisfied for
all generalized Newtonian constitutive equations.

In this paper, the shear and elongational viscosities of a
polymer have been represented by the truncated power-law
model (Fig. 1),

, (6)

, (7)

and

. (8)

The power-law indices for the shear (n) and elongational
(ma, mp) viscosities can be different. It is noted that forma

= mp = n, the model given by Eqns. 6 - 8 is identical to a
purely viscous generalized Newtonian formulation for a
truncated power-law model with power-law index ofn.
Effect of elongational power-law indices (ma, mp) on the
flow in a rectangular die is analyzed later in the paper.

Flow in a Rectangular Die with
Abrupt Contraction

Fig. 2 shows the finite element mesh used to simula
the flow in a rectangular die with abrupt contraction. Th
lengths of the sides of the square cross-section upstre
and downstream of the contraction are 8b and 2b, respec-
tively. Lengths of the upstream and downstream chann
are respectively, 10b and 20b. Using the symmetry of the
problem, only the flow in a quarter of the die was simulate
Along with the symmetry condition on the two planes o
symmetry and no-slip condition on the walls, averag
velocity for the required flow rate was enforced at th
entrance. For a fully developed flow at the exit, two veloci
components perpendicular to the die axis and the tract
force along the axis were specified to be zero. A fourtee

noded brick element ( ) with velocity nodes at th
eight corners and at the centers of the six faces [13] w
used for the flow simulation. Pressure is constant within t

element and the velocity nodes at the center of t
faces have only one degree of freedom, which is the velo
ity component normal to the face [13].

For the power-law index for shear viscosityn = 0.25,

Newtonian limite0 = 0.001 s-1 and the average strain rate

= U / b = 1 s-1, whereU is the average velocity in the

downstream channel, Fig. 3 shows the effect of elongatio
power-law indices on the recirculating vortices in the rec
angular die. To depict the flow direction, the unit vectors
the direction of velocity are shown in Fig. 3. Flow in a
plane of symmetry (left column in Fig. 3) as well as th
flow in a plane passing through a diagonal of the squa
cross-section (right column in Fig. 3) is shown. Forn = ma

= mp = 0.25, which corresponds to a purely viscous gener
ized Newtonian formulation for the truncated power-la
model with n = 0.25, no recirculating vortex is formed.
Even forma = mp = 0.5, no significant recirculation is found
in the plane of symmetry or diagonal plane. As the elong
tional power-law indices,ma andmp, are increased to 0.7,
recirculating vortices are observed in the plane of symme
as well as in the diagonal plane. In comparison to the vort
in the plane of symmetry, a larger vortex is formed in th
diagonal plane. A further increase in the value of the elo
gational power-law indices,ma andmp, to 0.8 results in a
significant growth in the recirculating vortices. Even forma

= mp = 0.8 the recirculating vortex in the diagonal plane
larger than the vortex in the plane of symmetry.

For the four cases presented in Fig. 3, the power-la
indices for the axisymmetric and planar elongational vi
cosities were the same. Fig. 4 shows the flow direction f
the two cases with different values ofma andmp. For n =
0.25,ma = 0.8 andmp = 0.5, no significant recirculation is
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found in the plane of symmetry or the diagonal plane,
whereas forn = 0.25,ma = 0.5 andmp = 0.8, large recircu-
lating vortices are formed in the plane of symmetry as well
as in the diagonal plane. Recirculating vortices forn = 0.25,
ma = 0.5 andmp = 0.8 are even larger than the vortices
shown in Fig. 3 (d) forn = 0.25,ma = mp = 0.8.

For various values of elongational power-law indices,
Fig. 5 shows the velocity along the axis of symmetry. Since
the average velocity for the required flow rate was enforced
at all the entrance nodes, the centre-line velocity increases
near the entrance. Forn = ma = mp = 0.25, which corre-
sponds to the truncated power-law model for a purely vis-
cous generalized Newtonian fluid with power-law indexn =
0.25, near the abrupt contraction the centre-line velocity
overshoots its value for a fully developed flow. This kink in
the centre-line velocity is maintained as the elongational
power-law indices are increased. However, at higher values
of elongational power-law indices, the kink is observed at a
lower velocity and a larger distance is required for the flow
to develop completely.

Pressure variation along the axis of symmetry for dif-
ferent values of elongational power-law indices are shown
in Fig. 6. Since the flow near the abrupt contraction is
highly elongation dominated, besides the pressure drop for
a fully developed flow in the upstream and downstream
channels, an additional pressure loss is encountered near
the abrupt contraction in the rectangular die. This steep
drop in the pressure near the abrupt contraction increases
sharply as the power-law indices for the axisymmetric and
planar elongational viscosities are increased.

Conclusions

A finite element software for a three-dimensional sim-
ulation of polymeric flows has been developed. The shear
and elongational viscosities of a polymer have been repre-
sented by the truncated power-law model with different
power-law indices for the shear and elongational viscosi-
ties. For a constant value of shear viscosity parameters, the
effect of power-law indices for axisymmetric and planar
elongational viscosities on the recirculating vortices and
pressure loss in a rectangular die was analyzed. Extra pres-
sure loss due to the elongational flow near the abrupt con-
traction in the die was found to increase rapidly with the
elongational power-law indices.
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Fig. 1. Truncated power-law model for shear and elonga
tional viscosities.

Fig. 2. Finite element mesh used for simulating the flow i
a rectangular die with abrupt contraction.
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Fig. 3. Recirculation in the rectangular die forn = 0.25,e0 = 0.001 s-1 and s-1. For each of the four cases, the powe
law indices for axisymmetric (ma) and planar (mp) elongational viscosities are the same. Values ofma andmp are (a)
0.25, (b) 0.5, (c) 0.7, (d) 0.8.
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Fig. 4. Recirculation in the rectangular die forn = 0.25,e0 = 0.001 s-1 and s-1. The elongational power-law indices

are (a)ma = 0.8, mp = 0.5, (b)ma = 0.5, mp = 0.8.
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Fig. 5. Velocity along the axis of symmetry forn = 0.25,e0

= 0.001 s-1, s-1 and various values of the

elongational power-law indices.
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Fig. 6. Pressure along the axis of symmetry forn = 0.25,e0

= 0.001 s-1, s-1 and various values of the

elongational power-law indices.
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