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Abstract 
 

The elongational viscosities of a low density 
polyethylene in axisymmetric and planar flows are 
compared. The experimental data on entrance pressure loss 
is matched with the corresponding finite element 
predictions to estimate the parameters in the elongational 
viscosity model proposed by Sarkar and Gupta. The 
entrance losses in the capillary and slit rheometers are used 
to predict the elongational viscosities for axisymmetric and 
planar flows respectively. The power-law region of the 
axisymmetric as well as planar elongational viscosity is 
found to follow the time-temperature superposition 
principle.  
 

Introduction 
 

Flows in various polymer processing techniques 
range from highly shear dominated in processes such as 
injection molding and transfer molding to highly 
elongation dominated in extrusion, thermoforming and 
blow molding. In the processes with elongation-dominated 
flows, elongational viscosity has a large effect on the 
velocity and pressure distributions. Therefore, an accurate 
knowledge of the elongational viscosity is critical for flow 
simulation and for optimum design of the equipment 
required for these processes.  

The procedure for measurement of the shear 
viscosity of a polymer is well established [1]. Typically, a 
cone and plate viscometer is used to measure the viscosity 
at low shear rates, whereas at high shear rates the viscosity 
is measured by using a capillary or a slit rheometer. The 
experimental data from capillary (axisymmetric flow) and 
slit (planar flow) rheometers show that the shear viscosity 
for the axisymmetric and planar shear flows is the same. 
Several empirical equations [2, 3, 4] are available in the 
literature, which can accurately capture the shear-rate and 
temperature dependence of the shear viscosity of various 
polymers.  

Measurement of the elongational viscosity of 
polymers is still an actively explored topic. Various 
techniques for direct experimental measurement of the 
elongational viscosity of a polymer, such as uniaxial 
extension, lubricated compression, fiber spinning, bubble 
collapse, stagnation flow using a four-roll mill or opposing 

jets etc, can be used to measure the elongational viscosity 
only at low elongation rates (< 10 s-1), because maintaining 
a steady extensional deformation is difficult at higher 
elongation rates [5]. Furthermore, these techniques are 
typically used to measure axisymmetric elongational 
viscosity; which can be different than the viscosity for a 
planar elongational flow [6]. Due to these difficulties 
associated with direct measurement of the elongational 
viscosity of a polymer, entrance flow is used in this paper 
to estimate the planar as well as the axisymmetric 
elongational viscosity of a polymer.  
 

Dependence of Elongational Viscosity on 
Elongation Mode 

 
For a purely elongational flow, the strain-rate 

tensor, )2/)��(~( Tvve ∇+∇= , where v�  is velocity, is as 
follows: 
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where ε�  is the elongation rate and the parameter b 
specifies the nature of the elongational flow, with b = 0 for 
an axisymmetric flow and b = 1 for a planar flow. A mixed 
elongational flow is obtained for b between 0 and 1.  
 In contrast to the shear viscosity )( sη , the 
elongational viscosity )( eη  of a fluid depends upon the 
elongation mode. For Newtonian fluids, for an 
axisymmetric flow                      ,      whereas for a planar 
flow                      .     Dependence    of    the    elongational 
viscosity of a polymer on elongation mode is explored later 
in this paper.  
 

Entrance Flow Method for Elongational 
Viscosity Estimation 

 
Entrance flow refers to the flow in a channel with 

an abrupt contraction. Because of the large elongational 
deformation experienced by the fluid near an abrupt 
contraction, a sharp pressure drop, called entrance loss, is 
encountered near the contraction. The entrance loss 
increases as the elongational viscosity is increased [7]. 
Since the entrance loss also depends upon the flow rate in 
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the channel, it can be used for an indirect measurement of 
the strain-rate dependence of the elongational viscosity of a 
polymer.  

By adding the pressure drop due to shear and 
elongational deformations near an abrupt contraction, 
Cogswell [8] was the first to obtain an estimate of 
elongational viscosity using the entrance pressure loss near 
an abrupt contraction. To simplify the analysis, Cogswell 
made several assumptions that were listed in our earlier 
publication [9]. Because of its simplicity, Cogswell�s 
expression is commonly used in the plastic industry to 
estimate the elongational viscosity of a polymer. Binding 
[10] removed some of the assumptions in Cogswell�s 
analysis and employed the energy principle to obtain a 
more accurate expression for entrance loss in terms of the 
power-law parameters for the shear   and 
elongational viscosities, and the flow rate 
in the channel: 
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where the parameters ,,,, 321 αkkk and wγ� , given below, are 
different for the planar and axisymmetric flows. 
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where 

0R ( 0H ) and 1R ( 1H ) are the radii (heights) of the 
downstream and upstream channels respectively, Q is the 
flow rate and d is the width of the slit in the planar case. In 
Eqn. (2), nmI is determined from the following equation 
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where 24 =k  for an axisymmetric flow and 14 =k  for a 
planar flow. Even though more accurate than Cogswell�s 
analysis, Binding�s analysis is also based upon several 
simplifying assumptions, which were also listed in 
reference [9].  

By relaxing all other assumptions, except for the 
assumption of an inertia-less, incompressible flow with no 
normal stresses in shear, Gupta [9] recently obtained 
estimates of the axisymmetric elongational viscosity of a 

low density polyethylene (Dow 132i) at 160 and 175°C. 
For simulating the entrance flow, Gupta [9] employed the 
finite element method along with the Carreau model for 
shear viscosity:  
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and the model proposed by Sarkar and Gupta [10] for 
elongational viscosity 
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where IIe  is the second invariant of the strain-rate tensor, 

rT , the Trouton ratio at low shear rates, is 3 for an 
axisymmetric flow and 4 for a planar flow, and 

210  , , , , , λλδλη n  and m are material dependent parameters. 
The same approach, which is discussed briefly in the next 
section, is used in this paper to estimate the axisymmetric 
as well as planar elongational viscosity of Dow 132i.  
 

Procedure for Estimation of Elongational 
Viscosity Parameters 

 
In the present work, following the approach used 

by Gupta [9], the elongational viscosity of a polymer is 
estimated by optimizing the four parameters 21,, λλδ  and m 
in Eqn. (4) such that the difference between the entrance 
loss predicted by a finite element simulation and the 
corresponding experimental values at various flow rates is 
minimized. The optimization scheme used for the results 
reported in this paper is the same as the scheme used in 
reference [9]. In this scheme, for a good computational 
efficiency instead of using all entrance loss vs. flow rate 
data points, a systematic scheme, described in detail in 
reference [9], is employed to select four of the data points 
for estimation of the four elongational viscosity 
parameters. In particular, two data points at high flow rates 
are used to estimate the power-law parameters 2λ  and m, 
whereas a point at a low flow rate is used to estimate 1λ  
and another point at an intermediate flow rate is used to 
estimate δ . As described in reference [9], first, the optimal 
values of 2λ  and m are determined by using the Newton-
Rapson method [12] alternately for the two parameters. 
Using the data point identified for optimization of the δ  
parameter, the Newton-Rapson method is used again to 
estimate the value of δ . Finally, the parameter 1λ  is 
estimated by using the bracketing and bisection technique 
[12] to minimize the error for the data point identified for 

1λ  optimization.  
 

 Experimental Data  
 

A Goettfert Rheograph 3000 was used to measure 
the shear viscosity and entrance pressure loss for the planar 
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geometry. A slit die with a pressure transducer located in 
the reservoir before the contraction and three transducers 
located at 30, 55 and 80 mm downstream from the 
contraction was used. The height and width of the die 
opening were 0.5 and 10 mm, respectively. The pressure 
readings from the three transducers along the die were 
extrapolated till the abrupt contraction. The difference 
between this extrapolated value of pressure and the 
pressure reading from the transducer located in the 
reservoir is the entrance loss.  

A Goettfert Rheotester 1000 was used to measure 
the shear viscosity and entrance pressure loss for the 
axisymmetric case. Three dies with a capillary diameter of 
1mm and capillary lengths of 5, 20 and 30 mm were used. 
The pressure vs. capillary length curves were extrapolated 
to find the entrance pressure losses for various flow rates. 
This entrance pressure loss data was also used to make the 
Bagley correction for shear viscosity measurement.  

For axisymmetric as well as planar flow, the 
Weissenberg-Robinowich correction was performed to 
account for the effect of a non-parabolic velocity profile on 
shear viscosity measurement. The entrance pressure loss 
vs. flow rate data was plotted on a log-log graph. A fourth 
order interpretation was used to fit a curve to the 
experimental data, which was then used to obtain the data 
points for the finite element simulations.  

A Bohlin VOR with 25mm parallel plates was 
used to measure the shear viscosity at low shear rates and 
the Arrhenius equation was used to find the zero shear rate 
viscosity at specific temperatures. The polymer used was a 
low density polyethylene (Dow 132i). Data was taken for 
two temperatures, 215 and 230 oC. 
 

Results and Discussion 
 

The experimental data on shear viscosity of Dow 
132i and the curve, which is obtained by fitting the Carreau 
model to the experimental data, are shown in Fig. 1. For 
the curves shown in the figure, the Carreau model 
parameters are as follows: 
215°C:  Pa.s1024.1 5

0 ×=η ,    s 3.63=λ  ,   401.0=n  

230°C:  Pa.s1005.1 5
0 ×=η ,    s 6.53=λ  ,   401.0=n  

It is noted that the power-law index reported 
above is different than the value of the index reported in 
reference [9] for the shear viscosity at 160 and 175°C. The 
shear viscosity parameters reported in reference [9] were 
based upon the experimental data obtained by using a 
capillary rheometer at Michigan Technological University. 
The data obtained by using a slit rheometer at Datapoint 
labs [13], resulted in a slightly different estimate of the 
shear viscosity. The Carreau model parameters reported 
above, which are based upon the data from the slit 
rheometer, have been used for all the results reported in 
this paper.  

For axisymmetric and planar flows of Dow 132i, 
Figs. 2 and 3 respectively, show the experimental data for 

entrance loss at two temperatures. The Carreau model for 
shear viscosity shown in Fig. 1 along with the entrance loss 
data in Figs. 2 and 3 were used to predict the axisymmetric 
and planar elongational viscosities, respectively.  

For the axisymmetric flow the channel contracted 
from 12 mm to 1 mm in diameter, whereas for the planar 
flow the channel height contracted from 12 mm to 0.5 mm. 
Therefore, different finite element meshes were used to 
simulate the axisymmetric and planar entrance flows. 

As mentioned earlier, the elongational viscosity 
estimation procedure starts with optimization of the power-
law parameters 2λ  and m. For both temperatures (215 and 
230°C), for the 2λ  and m optimization, the software 
selected the entrance pressure loss data points for flow 
rates of 10.2 and 792 mm3/s for the axisymmetric flow and 
for flow rates of 10.4 and 208 mm3/s for the planar flow. 
Since the flow rates are similar for the axisymmetric and 
planar flows, it should be noted that strain rates are higher 
for the axisymmetric flow because the area of cross-section 
of the channel beyond the contraction is larger for the 
planar case. Since the entrance loss data was available at 
lower strain rates for the planar flow, the strain thickening 
portion of the elongational viscosity could only be captured 
for the planar flow. For optimization of the δ  and 1λ  
parameters for planar flow, the entrance loss data point for 
the flow rate of 10.4 mm3/s was used for 215°C as well as 
for 230°C. With these control points, the elongational 
viscosity parameters predicted by the optimization 
software are as follows: 
 

Axisymmetric flow 
215°C:  0=δ ,             s 18.22 =λ ,                  349.0=m  
230°C:  0=δ ,             s 85.12 =λ ,                  349.0=m  
 

Planar flow 
215°C:  3.37=δ ,  s 22501 =λ , s 2.462 =λ ,  450.0=m  
230°C:  3.37=δ ,  s 3731 =λ ,   s 2.392 =λ ,  450.0=m  
 

For 1λ  optimization entrance loss at lower flow rates is 
required. However, at very low flow rates, entrance loss is 
too small to measure accurately. Therefore, the predicted 
values of the 1λ  parameter may not be very accurate. 
 It should be noted that the optimization software 
predicts the elongational viscosity parameter separately for 
each temperature. Except for the 1λ  values, which are not 
expected to be very accurate, the other three parameters 
were found to follow the time-temperature superposition 
principle. This observation is in agreement with the results 
of Munstedt and Laun [14]. Munstedt and Laun [14] used a 
Meissner-type uniaxial extension rheometer [15] to 
measure elongational viscosity at low elongation rates. 
They concluded that the slope of the elongational viscosity 
curve remains unaltered by a change in temperature and 
the time-temperature superposition can be used to shift 
elongational viscosity. Furthermore, they found that the 
temperature shift factors for elongational viscosity were 



 

 

identical to those for shear viscosity, which is also true for 
the values of δ , 2λ  and m reported above.  
 Fig. 1 also shows the elongational viscosity 
predicted by Binding�s analysis. To obtain the power-law 
parameters for elongational viscosity by Binding�s 
analysis, the same two data points as those used for finding 
the optimal values of 2λ  and m were used. That is, the data 
points for flow rates of 10.2 and 792 mm3/s for the 
axisymmetric flow and for flow rates of 10.4 and 208 
mm3/s for the planar flow were used. As expected, in the 
Newtonian and elongation-thickening portions of the 
elongational viscosity, the elongational viscosity 
predictions by Binding�s analysis are much higher than the 
viscosity based upon the optimized values of the 
parameters in the Sarkar-Gupta model. In the power-law 
region, for the axisymmetric case, the predictions from 
Binding�s analysis are in reasonable agreement with those 
from the present work. However, for the planar case, 
Binding�s predictions are significantly higher than the 
elongational viscosity obtained by using the optimization 
software in the present work.  

The axisymmetric elongational viscosity in Fig. 1 
does not have any elongation-thickening region. However, 
the actual axisymmetric elongational viscosity may have 
an elongation-thickening region. Since the experimental 
entrance loss data is available only for higher flow rates, 
the elongation-thickening region for axisymmetric 
elongational viscosity could not be captured in the present 
work. It is evident from Fig. 1 that for Dow 132i, for the 
same value of IIe , the planar elongational viscosity is 
always larger than the axisymmetric elongational viscosity. 
It will be interesting to investigate in the future, if this 
observation is valid for other polymers as well.  

Besides the experimental data, Figs. 2 and 3 also 
show the entrance loss predicted by our software. The 
curves labeled Sarkar-Gupta, in fact use the Sarkar-Gupta 
model for elongational viscosity along with the Carreau 
model for shear viscosity, whereas the curves labeled 
Carreau use the Carreau model with a generalized 
Newtonian formulation. For various parameters in these 
equations, the values given earlier in this section were used 
in the flow simulation. It is evident from Figs. 2 and 3 that 
the entrance loss predicted in the present work is in good 
agreement with the experimental data. The generalized 
Newtonian formulation with Carreau model predicted only 
about 25% of the experimental value of entrance pressure 
loss for axisymmetric flow and only about 10% of the 
experimental value for planar flow.  
 

Conclusions 
 

The planar and axisymmetric elongational 
viscosities of Dow 132i were estimated by minimizing the 
difference between the entrance loss predicted by a finite 
element simulation and the corresponding experimental 
data for the flow in slit and capillary rheometers. The 

planar and axisymmetric elongational viscosities were 
predicted for two different temperatures. The power-law 
regions of the planar and axisymmetric elongational 
viscosities were found to follow the time-temperature 
superposition principle. Since the experimental data at low 
flow rates, and hence the estimation of the elongational-
thickening portion of the viscosity curve, is not highly 
accurate, the time-temperature superposition could not be 
verified for the elongational thickening region of the 
viscosity curve for planar flows. Because of the 
unavailability of the entrance loss data at low flow rates, 
the elongational thickening portion of the viscosity curve 
could not be captured for axisymmetric elongational 
viscosity.  
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Fig. 1.  Variation of shear ( )sη  and elongational 

ric))(axisymmet  (planar), ( eaep ηη  viscosities of Dow 
132i with the second invariant of strain-rate tensor 
( )IIe .  
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Fig. 2.  Entrance loss vs. flow rate for Dow 132i for 

axisymmetric flow. 
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Fig 3.     Entrance loss vs. flow rate for Dow 132i for 

planar flow. 
 
 
  
 


