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Abstract

A new elongational viscosity model along with the
Carreau-Yasuda model for shear viscosity is used for a
finite element simulation of the flow in a capillary
rheometer. The entrance pressure loss predicted by the
finite element flow simulation is matched with the
corresponding experimental data to predict the parameters
in the new elongational viscosity model.

Introduction

Since the thickness of most plastic parts is small,
typically the flow during the filling stage of injection
molding is highly shear dominated. Therefore, the
generalized Newtonian constitutive models with shear
thinning viscosity have been successfully employed to
accurately simulate the mold filling process [1]. However,
in certain regions of the mold, such as the runners, gates
and portions of mold cavity with abrupt changes in
thickness, polymer melt goes through a significant
elongational deformation. The pressure gradient in these
regions with elongation-dominated flow, predicted by a
generalized Newtonian formulation can be significantly
smaller than the pressure gradient encountered in the
molding process [2]. The primary reason for the poor
prediction of elongation-dominated flow, is the low
elongational viscosity of the generalized Newtonian models
[3]. The long chain polymer molecules exhibit stiff
resistance to an elongational deformation. Therefore, the
elongational viscosity of a polymer, which is defined as the
ratio of the elongational stress to elongational strain rate, is
very high. An accurate knowledge of the elongational
viscosity of a polymer is important for simulating the
elongation-dominated flows.

Various techniques such as uniaxial extension,
lubricated compression, fiber spinning, bubble collapse,
stagnation flow, etc., have been used in the past to
experimentally characterize the elongational viscosity of
polymers. A good review of these techniques and the
difficulties associated with each of these techniques is
presented by Macosko in reference [4]. Among these, the
most commonly used technique is the uniaxial extension.
An elongational rheometer using uniaxial extension, which
is based upon Meissner’s work [5], is currently marketed by
Rheometric Scientific, Inc. [6]. However, maintaining a
steady uniaxial extensional deformation is difficult at a high

elongation rate [4]. Therefore, Meissner’s technique can be
used to determine elongational viscosity only at very low

elongation rates (< 10 s-1). Also, Meissner’s technique can
only be used for highly viscous melts. Since the
deformation rate in injection molding can range from 1,000
to 100,000 1/s, this technique cannot provide the
elongational viscosity data required for injection molding
simulation.

Due to the difficulties associated with direct
measurement of elongational viscosity of a polymer, the
flow in a channel with abrupt contraction (entrance flow)
has often been used for an indirect measurement of
elongational viscosity [4]. Since a polymer going through
an abrupt contraction experiences a large elongational
deformation, a steep pressure drop, called entrance pressure
loss, is encountered near the abrupt contraction. The value
to entrance pressure loss, which depends upon the flow rate
in the channel, can be used for an indirect measurement of
the strain-rate dependence of the elongational viscosity of a
polymer. The advantage of the entrance flow method for
measuring elongational viscosity is its applicability at high
elongation rate. Furthermore, an existing capillary
rheometer, which is commonly used for measuring shear
viscosity, can also be used for elongational viscosity
estimation.

Assuming that the pressure loss in an entrance flow can
be obtained by summing the pressure drops due to shear
and elongational deformations, Cogswell [7] obtained
separate expressions for these two pressure drops. To
further simplify the analysis, Cogswell made several other
assumptions listed below:
1. shear stress and shear rate are related by power-law

model
2. elongational viscosity is constant
3. the interface between the recirculation region and the

main flow is a straight line (funnel-shaped flow)
4. no-slip on the interface between recirculation region

and the main flow
5. fully developed flow with zero radial velocity
6. neglect Weissenberg-Robinowich correction [3]
7. inertia-less, incompressible flow with no normal

stresses in shear.
With these assumptions, Cogswell performed a force
balance on a differential section of the funnel-shaped entry
region near abrupt contraction. By integrating the



expressions thus obtained, Cogswell obtained the following
expressions for average elongation rate in entrance flow
(Eqn. (1)) and the corresponding elongational viscosity
(Eqn. (2)) for an axisymmetric flow.

(1)

(2)

where is the shear stress at the capillary

wall, , is the entrance pressure loss,

is the pressure drop in the capillary, R and L are the

radius and length of the capillary, respectively, and is the
elongation rate.

By removing some of the assumptions in the
Cogswell’s analysis, Binding [8] obtained a more accurate
expression for entrance pressure loss in an abrupt
contraction. However, many of the assumptions in
Cogswell’s analysis, listed below, are retained in Binding’s
analysis:

1. power-law model for shear viscosity as

well as for elongational viscosity
2. the interface between the recirculation region and the

main flow is a straight line (funnel-shaped flow)
3. no-slip on the interface between recirculation region

and the main flow
4. fully developed flow with no radial velocity

5. , such that the terms involving (dR/dz)2

and d2R/dz2 can be neglected, implying a large recircu-
lation zone

6. energy consumed in recirculation zone can be
neglected

7. inertia-loss, incompressible flow with no normal
stresses in shear.

With these simplifications, Binding employed energy
principles to obtain the following equation for entrance
pressure loss:

(3)

where α = R0/R1, with R0 and R1 being the radii of
downstream and upstream channels respectively,

, and the shear

rate at capillary wall . If the

power-law model for shear viscosity of a polymer, and
entrance pressure loss is known for two different flow rates

in an abrupt contraction, Eqn. (3) can be used to determine
the power-law model (B, m) for the elongational viscosity
of a polymer.

By using independent power-law models for shear and
elongational viscosities, Gupta [9] analyzed the effect of
elongational viscosity on vortex formation and entrance
pressure loss in an axisymmetric 4:1 entrance flow. Similar
analysis of the flow in a channel with abrupt contraction for
the planar and the three-dimensional cases were later
presented in references [10] and [11], respectively. In
references, [9 - 11], the truncated power-law model was
used for the shear viscosity as well as for the elongational
viscosity in the axisymmetric and planar cases. This
approach of simulating polymeric flows is not only frame
invariant, but predicted velocity and pressure distributions
for a general 3-D flow are also identical to those from the
generalized Newtonian formulation, if the specified shear
and elongational viscosity models are such that

for axisymmetric flows and

for planar flows, with being the

second invariant of the strain rate tensor. More recently,
using the same approach, Sarkar and Gupta [12] employed
the Carreau model for shear viscosity and a modification of
Carreau model for elongational viscosity.

(4)

(5)

The elongational viscosity model in Eqn. (5), reduces to the
Carreau model for δ = 0 with the elongational viscosity
parameters λ2 and m replacing λ and n respectively, in the
shear viscosity model. The two additional parameters λ1

and δ in Eqn. (5), control the increase in the elongational
viscosity in the elongation-thickening region [12].

In the present work, we have used the Carreau model
for shear viscosity (Eqn. (4)) and model proposed by Sarkar
and Gupta for elongational viscosity (Eqn. (5)). Knowing
the shear and elongational viscosity parameters, a finite
element simulation of the entrance flow is performed. The
finite element simulation of the entrance flow eliminates
most of the simplifying assumptions of Cogswell and
Binding’s analysis. However, the flow simulation still
assumes an inertia-less, incompressible flow with no
normal stresses in a shear flow. With a knowledge of the
shear viscosity and entrance pressure loss, using the
procedure presented in the next section, the elongational
viscosity parameter are optimized such that the difference
between the experimental values of entrance pressure loss
and the corresponding predictions from the finite element
simulation is minimized.
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Estimation Procedure for Elongational
Viscosity Parameters

In our earlier publication [13], we reported a global
minimization procedure to optimize the elongational
viscosity parameters. In particular, starting with an initial
guess for the four parameters, the simplex optimization
scheme [13] was used to iteratively improve their values
such that the difference between experimental and
predicted values of entrance loss is minimized. Even though
such a global minimization procedure is more rigorous, and
attempts to minimize the error over the complete range of
flow rate vs entrance loss data, it requires very large amount
of computational time, and convergence to the optimal
values is prohibitively slow at times.

To improve the efficiency of the estimation software, in
the present work, only the values of λ2 and m are optimized
simultaneously, which is followed by individual
optimization of δ and λ1. It should be noted that parameters
λ2 and m affect the elongational viscosity only in the
power-law region at high strain rate, whereas δ and λ1

control the shape of the elongational-thickening portion of
the viscosity curve [12]. In particular, λ1 determines the
strain rate for onset of elongation thickening region,
whereas δ controls the total increase in the viscosity in the
thickening region. Since δ and λ1, and λ2 and m affect the
elongational viscosity in different regions, values of δ and
λ1, and those of λ2 and m can be optimized independently.
Because of this localized effects of δ and λ1, and that of λ2

and m, if all the entrance pressure loss data is in power-law
region, optimization of the elongation-thickening
parameters is difficult and vice versa. The localized effects
of power-law (λ2 and m) and elongation-thickening (δ and
λ1) parameters on elongation viscosity curve, result in the
inefficiency of the global minimization scheme.

To optimize the four elongational viscosity parameters,
the experimental data for entrance loss is required for at
least four different flow rates. Two of these points should be
in the power-law region (to determine λ2 and m). If the
polymer melt exhibits the elongation-thickening region, one
of the points should be in the elongation-thickening region
(to determine δ) and the fourth point should be in the
transition region between Newtonian and elongation
thickening behavior (to determine λ1). Typically, entrance
pressure loss vs flow rate data is available at a large number
of points ( ). Since an entrance flow simulation for a
fixed set of elongational viscosity parameters requires
significant amount of computation time (from 2 - 20
minutes on a Sun workstation, depending upon the number
of nodes in the finite element mesh and number of iterations
required for convergence), and the entrance flow is
repeatedly simulated at the entrance loss vs flow rate data

points, a very large computation time is required for
estimation of elongational viscosity parameters, if all the
data points are used in the optimization scheme. Therefore,
a systematic scheme, described in the next paragraph, is
employed in the present work to select the four entrance
loss vs flow rate data points for estimation of the four
elongational viscosity parameters.

Estimation procedure of elongational viscosity
parameters starts with an initial guess for the four
parameters. The software allows the user to specify an
initial estimate of the four parameters. Otherwise, the
software automatically initializes the elongational viscosity
parameters based upon the generalized Newtonian
formulation, that is , or from the values

obtained by Binding’s analysis. It should be noted that in
both of these cases δ = 0, and λ1 have no affect on
elongational viscosity if δ = 0. Therefore, only λ2 and m are
initialized. Since the experimental data at higher flow rate is
expected to be in the power-law region, the data point at the
highest flow rate and another data point with flow rate of
about one-hundredth of the highest flow rate are used for
estimation of power-law parameters λ2 and m. Once the two
points for estimation of power-law parameters are
identified, as shown in Fig. 1, the optimal values of λ2 and
m are determined by alternating the Newton-Raphson
method for λ2 and m. The function fm and are the

differences in experimental and predicted values of
entrance pressure loss for points with the highest flow rate
and one-hundredth of the highest flow rate, respectively. At
this point of the algorithm λ2 and m have been identified,
however δ is zero and λ1 is also unknown. With δ = 0 and
using the estimated value of λ2 and m in the elongational
viscosity curve, the data point having the largest difference
between experimental and predicted value of entrance loss
is used for optimization of δ. If some of the points in the
entrance loss vs flow rate data are in the Newtonian range
of elongational viscosity, experimental value of entrance
loss for these points should match with the predicted
entrance loss for δ = 0 in the elongational viscosity model
(Eqn. (5)). Therefore, starting with the lowest flow rate, the
first experimental point with greater than 10% error
between experimental and predicted entrance loss is used to
optimize the value of λ1. Before starting the optimization of
δ, the parameter λ1 is initialized to a very large value λ2 =

λ1 1010, which implies that elongation thickening is
assumed to start at a very low elongation rate. Using the
point identified above for optimization of δ, as shown in
Fig. 1, Newton-Raphson method is used again to estimate
the value δ. The function fδ in Fig. 1 is the difference
between experimental and predicted entrance loss for the
point being used for optimization of δ. Finally, the
parameter λ1 is estimated by minimizing the entrance loss
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error for the point identified above for λ1 optimization. The
bracketing and bisection method [14] is used for optimizing
the value of λ1.

Experimental Data

A Goettlfert Rheometer 1000 was used to measure the
viscosity and entrance pressure loss. The diameter of
capillary in all the dies used was 1 mm. The pressure loss vs
capillary length curves for dies with capillary length of 5,
20, 30 and 40 mm were extrapolated to obtain the entrance
pressure loss. The Weissenberg-Robinowitch correction
was applied to account for the non-parabolic velocity
profile. A Bohlin VOR with 25 mm parallel plates was used
to measure the shear viscosity at low shear rates. in the
experiments, a low density polyethylene (Dow 132i) was
used. The entrance pressure loss and shear viscosity was

measured for two different temperatures - 160 and 175 oC.

Results and Discussion

In this paper, the elongational viscosity for a low
density polyethylene (Dow 132i) is estimated at two

different temperatures. For Dow 132i at 160 and 175 oC,
the experimental data for entrance pressure loss at various
flow rates is shown in Fig. 2. As expected, the entrance loss
increases significantly as the flow rate is increased. At a
fixed flow rate the entrance loss is higher for the lower
temperature. The shear viscosity for Dow 132i, which is
obtained by fitting the Carreau model to the experimental
data, is shown in Fig. 3. The Carreau model parameters for
the shear viscosity of Dow 132i are as follows:

160oC: η0 = 2.6 105 Pa.s λ = 37.35 s-1 n = 0.3409

175oC: η0 = 2.1 105 Pa.s λ = 31.69 s-1 n = 0.3409
The entrance loss data in Fig. 2 and the Carreau model

for shear viscosity in Fig. 3, was used in the present work to
predict the elongational viscosity employing the algorithm
discussed earlier in this paper. For the two different
temperatures, the predicted elongational viscosity is shown
in Fig. 3. It should be noted that the predicted elongational

viscosity in Fig. 3 is plotted against . The
power-law parameters for the elongational viscosity were
predicted using the entrance pressure loss value for flow

rates of 5.65 and 339 mm3/s for 160oC and for 5.66 and 452

mm3/s for 175oC. With these control points the
elongational viscosity parameters are as follows:

160oC: λ2 = 1.61 s-1 m = 0.281

175oC: λ2 = 2.35 s-1 m = 0.317
With these values of power-law parameters for elongational
viscosity, the largest difference in the experimental and
predicted entrance pressure loss is at the lowest flow rates -

1.13 and 0.565 mm3/s for 160 and 175oC, respectively. For
each of the two temperatures, optimization of the

elongational viscosity parameter δ was attempted by using
the entrance loss data at these two points. However, at both
the temperatures, the predicted entrance loss at the lowest
flow rates in Fig. 2, was found to be highly insensitive to a
change in δ, indicating that even the two points at the
lowest flow rates in Fig. 2 are in the elongation-thinning
region of elongational viscosity. Therefore, for Dow 132i
the elongational-thickening parameters (δ, λ1) in Eqn. (5)
could not be predicted using the available entrance loss
data. Accordingly, the elongational viscosity curves for
Dow 132i in Fig. 3 do not show any elongation-thickening
behavior. However, the elongational viscosity for Dow 132i

may have an elongation-thickening region for eII < 1 s-1,
which can only be captured using our algorithm if the
entrance loss data is available at smaller flow rates. Since
the entrance loss at lower flow rates may be too small to
measure with a reasonable accuracy, elongational viscosity
at lower elongation rates may not be predicted accurately
using the current technique. This is not a serious limitation
of this technique because the elongation rates in polymer
processing are typically quite high. Also, if the elongational
viscosity at lower elongation rates can be measured by
other experimental techniques mentioned earlier in the
paper, a composite elongational-viscosity may be
constructed by finding the elongation-thickening
parameters (δ, λ1) using the elongational viscosity
measured by direct experimental techniques and the power-
law parameters (λ2, m) from the entrance pressure loss
measurement.

For Dow 132i, the elongational viscosities at 160 and

175oC, predicted by Cogswell’s and Binding’s analysis are
also shown in Fig. 3. Interestingly, even though Cogswell’s
and Binding’s predictions are based upon numerous
simplifying assumptions, the elongational viscosity
predicted by the two analyses are in good agreement with
the predictions from the present work.
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