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ABSTRACT: A finite element simulation of the flow in a planar channel with an abrupt
contraction is presented. The effect of the elongational viscosity of a polymer on the entrance
flow is analyzed employing a truncated power-law model. The power-law index and the
strain rate characterizing the transition from Newtonian to power-law behavior for the
elongational viscosity are treated as being independent of the values of these two parameters
for the shear viscosity. The effect of flow rate on planar entrance flow is also analyzed. It is
confirmed that Trouton ratio is important in determining the recirculating vortex and the ex-
tra pressure loss in entrance flow. Extra pressure loss and vortex length predicted by a finite
element simulation of a planar entrance loss are compared with the corresponding predic-
tions from Binding’s approximate analysis.

INTRODUCTION

UE TO THE elongational flow near an abrupt contraction in a channel (entrance

flow), in addition to the pressure drop for fully developed flow in the upstream
and downstream channels, an extra pressure loss is encountered in an entrance
flow. Since the long chain molecules of a polymer exhibit stiff resistance to an
elongational deformation, this extra pressure loss, called entrance loss, can be par-
ticularly large for polymers. To minimize the entrance pressure loss, in a polymeric
flow, large recirculating vortices are often formed near the abrupt contraction
[1-7]. The formation of recirculating vortices reduces the elongation rate near the
abrupt contraction, resulting in a smaller entrance pressure loss.

- To simulate the entrance flow of polymers, two different constitutive theories,
namely, the generalized Newtonian formulation, and viscoelastic formulation,
have been extensively used in the literature. Even though, the generalized Newto-
nian constitutive equations can accurately predict the shear-thinning viscosity of
polymers, the predicted elongational viscosity by such a formulation is generally
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smaller than the actual elongational viscosity of a polymer. Therefore, the en-
trance loss predicted by a generalized Newtonian formulation is smaller than its
experimental value [8-12]. In comparison to generalized Newtonian formulation,
viscoelastic constitutive equations predict much higher elongational viscosity and
hence, a larger entrance pressure loss [13-21]. However, the elongational viscos-
ity and the entrance pressure loss predicted by a viscoelastic constitutive equation
may not accurately match with the corresponding experimental values, particu-
larly, if only the shear properties of polymer are used to estimate the rheological
parameters in the constitutive equation. Moreover, most of the numerical schemes
for simulation of viscoelastic flows do not converge at higher strain rates, limiting
their application to simulate the flow in various polymer processing techniques.

In the present work, a software for simulation of planar polymeric flows has
been developed. To simulate a polymeric flow, this software requires strain-rate
dependence of shear as well as elongational viscosity. This newly developed soft-
ware has been used in this paper to analyze the effect of elongational viscosity on
the entrance pressure loss and formation of recirculating vortices in an entrance
flow. Similar investigation for an axisymmetric entrance flow can be found in
Reference [22].

SHEAR AND ELONGATIONAL VISCOSITIES IN A PLANAR FLOW

The shear and elongational viscosities of a Newtonian fluid are constant. For a
planar flow of Newtonian fluids, the Trouton ratio (Tr), which is defined as the ra-
tio of the elongational viscosity to shear viscosity, is 4. At low strain rate the shear
and elongational viscosities of a polymer are typically constant with Tr =4 for a
planar flow. Beyond the Newtonian range, shear viscosity of a polymer decreases
as the strain rate is increased, whereas the variation of elongational viscosity be-
yond the Newtonian range depends upon the polymer. The experimental data in
the literature show that as the strain rate is increased beyond the Newtonian range,
the elongational viscosity of a polymer may decrease [23-25], remain constant
{26], increase initially followed by a decrease [27] or it may exhibit a more com-
plex behavior, such as a second increase beyond the strain-thinning region [28].

As reported in Reference [22], in the present work, the shear and elongational
viscosities have been represented as functions of the second invariant of the strain
rate tensor & = (V9 + ViT) /2, where ¥ is the velocity vector. The shear as well
as elongational viscosities have been represented by truncated power-law model
(Figure 1):

M, = Aej forey > e M, =M fore,; < e (¢))

and
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Figure 1. Truncated power-law model for shear and elongational viscosities.

Ne = Beﬂ‘l for ey > Ne = 4110 for ey S € 2)

where e;; = /2(:€) is the second invariant of the strain-rate tensor, 1), and 1), are
the shear and elongational viscosities, respectively, and A and B are the consis-
tency coefficients. The power-law indices (m, n) as well as the strain rates charac-
terizing the transition from Newtonian to power-law behavior (e, €1) can be dif-
ferent for the shear and elongational viscosities. As mentioned in Reference [22],
thetruncated power law model can accurately represent the elongational viscosity
of many polymers such as HDPE {23,24] and polystyrene [25] and has been se-
lected in the presented work because of its simplicity, and feasibility of separating
the effects of elongational viscosity parameters m and e, on polymeric flows.
However,: our software can be used-with any other equation specifying the
strain-rate dependence of shear.and elongational viscosities. Itis noted that form=
n and ey = e}, the model given by Equations: (1) and (2) is-identical to apurely vis-
cous generalized Newtonian formulation for a truncated: power-law model with
power-law index and Newtonian limit of n and ey, respectively. The effects of
elongational power-law index (m), Newtonian limit for elongational viscosity (e;)
and that of flow rate on entrance flow are analyzed in the next section. This paper
only addresses the effect of steady-state elongational viscosity on entrance flow.
The effects of the normal stress difference and transient behavior of elongational
viscosity, which can also affect the vortices and extra pressure loss in entrance
flow, have not been accounted in this work.
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ENTRANCE FLOW

Following the terminology used in Reference [22}, in this paper the entrance
loss is expressed in terms of an equivalent length of the downstream channel:

[ =224 4 3)
)23

where Ap is the total pressure drop in an entrance flow, Ap, and Ap, are, respec-
tively, the pressure drop for fully developed flow in the portions of the channel up-
stream and downstream of the abrupt contraction, and dp, is the magnitude of the
fully developed axial pressure gradient in the downstream channel. Trouton ratio
(Tr =m, /) for the strain rate at the downstream wall has been used in this pa-
per to characterize the entrance flow.

By separately calculating the pressure drop due to shear and elongational flow
near an abrupt contraction, Cogswell [29] developed analytical expressions for an
approximate calculation of entrance loss for a fluid with different power-law indi-
ces for shear and elongational viscosities. Cogswell’s expressions for entrance
loss were further refined by Binding [30], who employed energy principle to relate
the entrance loss and vortex length in an entrance flow to the flow rate and the
shear and elongational viscosities of the polymer. Similar to the approach fol-
lowed in this paper, Binding also used independent power-law models to represent
the shear and elongational viscosities. Later in this section, for a planar 4:1 en-
trance flow, the extra pressure loss and vortex length predicted by a finite element
simulation employing truncated power-law models for shear and elongational vis-
cosities are compared with the corresponding values computed by using the ana-
lytical expressions developed by Binding [30]. It should be noted that the finite
element predictions are expected to be somewhat different from the values calcu-
lated by Binding’s analytical method because the power-law models are not trun-
cated at low strain rates in Binding’s analysis. Furthermore, Binding’s analysis
involves several simplifying assumptions, whereas, in the present work, strain-
rate-dependence of shear and elongational viscosities has been captured in a
frame-invariant constitutive equation. In particular, assuming a slow growth in the
height of the recirculating vortex (h), that is, a large vortex, Binding neglected the
terms involving (dh/dx)? and d?h/dx? in the shear strain rate. However, for most of
the entrance flow simulations reported later in this paper, |dh/dx| for the recirculat-
ing vortex is greater than 1.

In Reference [22], for an axisymmetric 4:1 entrance flow, convergence of the
numerical simulation was verified by using three successively refined meshes.
Using the same finite element meshes, convergence of the numerical simulation of
a planar 4:1 entrance flow has also been verified. The most refined of the three
meshes (mesh C in Reference [22]) has been used for all the finite element simula-
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tions reported in this paper. Unless specified otherwise, length of upstream and
downstream channels is 20k, and 30k, respectively, where h, is the half-height of
the downstream channel. Using the symmetry of the problem, only the flow on one
side of the axis is simulated. Along with the no-slip boundary condition at the wall
and symmetry condition on the axis, a fully developed flow has been specified at
the entrance and the exit.

Effect of Elongational Power-Law Index on Entrance Flow

If the Newtonian limits for the shear and elongational viscosities and the
power-law index for the shear viscosity are fixed, then for any strain rate beyond
the Newtonian limits, the Trouton ratio increases as the elongational power-law
index is increased. Therefore, keeping the flow rate and all other viscosity parame-
ters fixed, as the elongational power-law index is increased, the extra pressure loss
and recirculating vortex in an entrance flow are expected to grow. With the flow
rate, Newtonian limits for the shear and elongational viscosities, and power-law
index for shear viscosity being constant (n = 0.25, ¢y = e; = 0.001 s7,
Yo =U/lhy = 157!, where U and ¥,, are, respectively, the average velocity
and strain rate in the downstream channel), Figure 2 shows the effect of
elongational power-law index (m) on the recirculating vortex in a planar 4:1 en-
trance flow. To depict the flow direction, Figure 2 shows the unit vectors along the
direction of velocity. For m =0.25, which corresponds to a purely viscous general-
ized Newtonian formulation for the truncated power-law model with n = 0.25 and
o= 0.001 57, in Figure 2(a) a small recirculating vortex is formed near the abrupt
contraction. As the elongational power-law index is increased to m = 0.4 [Figure
2(b)], the recirculating vortex grows significantly. Atm = 0.47 [Figure 2(c)], alip
vortex is also formed near the entrant corner. For the planar 4:1 entrance flow, lip
vortex is formed only for a narrow range of elongational power-law index (m =
0.46 — 0.48) and it always seems to overlap with the corner vortex. In contrast, for
an axisymmetric 4:1 entrance flow, a much larger lip vortex was observed in Ref-
erence [22]. These numerical predictions agree with the experimental observa-
tions of Walters and coworkers. Based upon their experimental work, Walters et
al. [1,3,6,7] concluded that in comparison to the axisymmetric case, formation of
lip vortex is rare in a planar entrance flow. A large recirculating vortex with the
center of circulation close to the entrant corner is formed for m = 0.5 [Figure 2(d)].
As the elongational power-law index is increased beyond 0.5, [see Figure 2(e) for
m = 0.7] the recirculating vortex continues to grow and the center of circulation
moves away from the entrant corner. For n = 0.25, ¢y = ¢; = 0.001 s7! and
Ya» = 1571, the planar 4:1 entrance flow simulation converged up to m = 0.7,
which corresponds to Tr=200.6 (see Appendix). As mentioned in Reference [22],
even though the numerical simulation never diverged, for extremely large Trouton
ratio, elongational stresses due to computational error in velocity field start to
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(c)

Figure 2. Recirculation in 4:1 abrupt contraction for n = 0.25, ep = e7 = 0.007 s and
Yav = 187\ The elongational power-law index, m, is (a) 0.25, (b) 0.4, (c) 0.47, (d) 0.5 and (e)
0.7.



Simulation of Planar Entrance Flow 347

(e

Figure 2 (continued). Recirculation in 4:1 abrupt contraction for n=0.25, ep=€;=0.001s™"
and Y., = 187'. The elongational power-law index, m, is (a) 0.25, (b) 0.4, (c) 0.47, (d) 0.5 and
(e) 0.7.

dominate the shear stresses and the simulations fails to converge to a specific value
even for flow in a channel without a contraction.

For n=0.25, eg=¢; = 0.001 s™! and 7y,, = 1 s}, Figure 3 shows the effect of
elongational power-law index on the velocity along the center line. For
axisymmetric 4:1 entrance flow in Reference [22], near the abrupt contraction,
0.56% overshoot was observed in the center-line velocity for m=0.25. In Figure 3,
for m=0.25, which corresponds to the truncated power-law model for a purely vis-
cous generalized Newtonian fluid, no such overshoot is found in the centerline ve-
locity for a planar 4:1 entrance flow. For m > 0.25, near the abrupt contraction,
which is located at x/h, =0 in Figure 3, a kink (without any overshoot) is observed
in the centre-line velocity. As the elongational power-law index is increased, this
kink in the center-line velocity occurs at a lower normalized velocity and a longer
distance is required to reach the fully developed velocity profile.
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Figure 3. Velocity along the axis of symmetry for n=0.25, eg=e1 = 0.001 8", y,, = 1s~! and
various values of the elongational power-law index.

For various values of elongational power-law index, Figure 4 shows the nor-
malized pressure variation along the center line, where the normalization has been
performed with respect to the shear stress at the wall in the downstream channel.
The effect of elongational power-law index on entrance loss, which corresponds to
the steep drop in the center-line pressure near the abrupt contraction in Figure 4, is
shown in Figure 5. For m = 0.25, the predicted entrance losses in terms of the
equivalent length of the downstream channel L, are, respectively, 1.8 and 1.42 for
planar and axisymmetric cases, which are in good agreement with the values of en-
trance loss reported in the literature [8—12] for 4:1 entrance flow of a purely vis-
cous power-law fluid with n = 0.25. The entrance loss increases rapidly as the
elongational power-law index is increased. Interestingly, at higher values of m, for
the axisymmetric and planar cases, entrance pressure loss in terms of the equiva-
lent lengths of the downstream channel are almost the same. For instance, for m =
0.7, the equivalent lengths for the axisymmetric and planar cases are 20.97 and
20.7, respectively. Figure 5 also shows the entrance loss computed by using Bind-
ing’s approximate analysis [30]. In view of various simplifying assumptions in
Binding’s analysis and the difference in the rheological models at low strain rates,
the agreement between the entrance loss predicted by Binding’s analytical method
and that by finite element flow simulation is quite good. However, the vortex
length (L,) calculated by Binding’s approximate method is much larger than the
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various values of the elongational power-law index.

Figure 5. Entrance loss vs. m for n = 0.25, g = e1 = 0.001 s~ and ,, = 1s™\.
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Figure 6. Vortex length vs. m for n = 0.25, eg = €1 =0.001 s~ and vy,, = 1s~".

corresponding predictions from the finite element simulation (Figure 6). As men-
tioned for axisymmetric entrance flow in Reference [22] in Figure 6 the vortex
length from finite element simulation is the axial distance between the abrupt con-
traction and the farthest node with a positive velocity component in the upstream
direction. Even though away from the recirculating vortex the velocity and pres-
sure fields have converged with respect to the mesh refinement, depending upon
the location of nodes in the mesh, the vortex length was found to change as much as
10% as the finite element mesh was refined successively. Therefore, the finite ele-
ment prediction of the vortex length reported in this paper may have an error as
large as £10%. However, the discrepancy between the vortex length predicted by
the finite element simulation and that by Binding’s analysis is much beyond this
error in the finite element predictions. Such a disagreement between the two esti-
mates of the vortex length is not completely unexpected because the vortex length
in Binding’s analysis is actually the length of the upstream channel over which the
flow is not fully developed, which is generally much larger than the vortex length.
In Figure 6, Binding’s approximate method predicts similar vortex lengths in the
axisymmetric and planar entrance flows, whereas, the vortex length predicted by
finite element simulation of the planar entrance flow is larger than the correspond-
ing prediction for the axisymmetric case. It is noted that in comparison with
axisymmetric flow, the experimental results [1,2,6] reported in the literature have
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found a weaker vortex enhancement for planar entrance flow. Even though these
observations seem to contradict the numerical predictions in Figure 6, since the
axisymmetric and planar elongational viscosities of a polymer can be different, a
weaker vortex enhancement in planar entrance flow is certainly feasible, if the

power-law index for the planar elongational viscosity is higher than that for the
axisymmetric elongational viscosity.

Effect of Newtonian Limits

Keeping the flow rate, Newtonian limit for the shear viscosity (eo) and the shear
and elongational power-law indices (n,m) fixed, if the Newtonian limit for
elongational viscosity (e,) is increased, the value of Trouton ratio increases for all
strain rates beyond e;. Therefore, for fixed power-law indices at a constant flow
rate, the extra pressure loss and recirculating vortices in an entrance flow are ex-
pected to grow with e;. It should be noted that a change in e; also affects the value
of B in Equation (2).

With the flow rate and all other viscosity parameters fixed (Yo, =157}, n=
0.25,m=0.5, ¢5=0.001 s, effect of e; on the extra pressure loss for 4:1 entrance
flow is shown in Figure 7. For e; > 0.02 s7!, the simulation does not converge.
Since Trouton ratio increases as e; is increased, the entrance loss in Figure 7 in-
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Figure 7. Entrance loss vs. e1 for n=0.25, m = 0.5, g = 0.007 s’ and Y, = 1s7".
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creases rapidly with e,. At higher values of Trouton ratio, that is, large e;, in terms
of the equivalent length of the downstream channel, entrance losses predicted by
finite element simulation of axisymmetric and planar entrance flows are almost
the same. The entrance loss calculated by using Binding’s approximate analysis,
which is also shown in Figure 7, is in reasonable agreement with the predictions
from the finite element flow simulation. Binding’s method predicts a slightly
lower entrance loss for the axisymmetric case.

For planar 4:1 entrance flow, Figure 8 shows the change in the vortex length as
the elongational Newtonian limit is increased. The variation in vortex length in
Figure 8 follows the same trends as those observed in Figure 6. In particular, the
vortex length calculated from Binding’s method, which is actually the length of
the upstream channel over which the flow is not fully developed, is much larger
than the vortex length predicted by the finite element flow simulation. Binding’s
method predicts almost the same vortex length for the axisymmetric and planar
cases, whereas the vortex length predicted by finite element simulation is larger
for the planar entrance flow. For e; = 0.015 s7!, the vortex length predicted by fi-
nite element simulation is slightly smaller than the vortex length for e; =0.01 s™!.

~ As mentioned in the last section, even though the flow field away from the recircu-
lating vortex has converged with respect to the mesh refinement, vortex length
predicted by finite element simulation may have an error of £10% . The fluctuation
in Figure 11 is within the accuracy of the predicted vortex length.

Effect of Flow Rate

If all the parameters for the shear and elongational viscosities are fixed and the
power-law index for elongational viscosity is larger than the index for the shear
viscosity, then for e;; > e, the value of Trouton ratio increases with strain rate.
Therefore, the extra pressure loss and recirculating vortex in a planar 4:1 entrance
flow are expected to grow as the flow rate is increased. For constant values of shear
and elongational viscosity parameters (n=0.25, m=0.5, ey = ¢, =0.001 s7!), the ef-
fect of flow rate on entrance loss in a planar 4:1 entrance flow is shown in Figure 9.
The simulation does not converge as the flow rate is increased beyond
Yav = 1000 s~!. The simulation indicates that the entrance loss increases rapidly
as the flow rate is increased. Figure 10 shows the variation in vortex length as the
flow rate is increased. The variations in entrance loss and vortex len gth in Figures
9 and 10, respectively, follow the same trends as those observed in Figures 5-8. In
particular, the entrance loss predicted by Binding’s approximate analysis, which is
also shown in Figure 9, is in reasonable agreement with the corresponding predic-
tions from the finite element flow simulation. In comparison to the vortex length
predicted by finite element flow simulation (Figure 10), Binding’s analysis pre-
dicts a much larger vortex length.
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APPENDIX

Value of Trouton ratio at the downstream channel wall in a 4:1 abrupt contrac-
tion:

(a) Forn=0.25,¢y=¢;=0.001 57, y,, = 157!

m 0.25 0.35 0.45 0.55 0.65 0.7
Tr 4.0 9.5 22.8 54.4 129.8 200.6

(b) Forn=0.25m=0.5,¢,=0.001s7,7,, =1s!

e(s™) 0.001 0.003 0.005 0.01 0.02
Ir 35.2 61.0 78.7 111.3 1574

(c) Forn=0.25,m=0.5, ¢g=e; = 0.001 57,

Var(s™) 0.1 1 10 100 1000
Tr 19.8 35.2 62.6 1113 198.0
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