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Abstract 
The Giesekus model is used for viscoelastic 

simulation of a bi-layer flow in a square die. In contrast to 

the experimental data reported in the literature, in the 

present work even with viscoelastic effects included in the 

simulation, encapsulation of a high viscosity polymer by a 

lower viscosity polymer could not be captured. Since the 

viscous encapsulation could not be captured with a purely 

viscous formulation either, it is concluded that the 

difference in the wettability and surface tension of the two 

polymers is probably the major factor resulting in the 

encapsulation. 

 

 

Introduction 
Coextrusion, which involves simultaneous extrusion 

of several different polymers through a die, combines the 

functionalities and benefits of several polymers into a 

single multi-layered product [1]. Despite this inherent 

advantage of coextrusion, design of coextrusion dies is 

difficult because depending upon the rheology of 

polymers used for coextrusion, the polymers in various 

layers may get redistributed as they flow through the die 

such that the distribution of various polymers at the inlet 

and at the exit of the die may be quite different. In 

particular, it has been observed in coextrusion 

experiments that as two polymers with different 

viscosities flow together, in the region near the die walls 

the lower viscosity polymer tends to encapsulate the 

higher viscosity polymer [2]. Because of the undesirable 

variation in layer thickness caused by the encapsulation, 

plastic films and sheets are often trimmed at the ends to 

discard these non-uniform portions.  

Unfortunately, the root cause behind the encapsulation 

phenomena, whether it is caused by the difference in 

viscosity, or in viscoelasticity, or in some other property 

of the two polymers, is still not completely understood. 

Simulations of coextrusion using a purely viscous 

formulation available in the literature [3], including our 

earlier work [4], have not been successful in capturing the 

encapsulation. This may lead one to believe that the 

encapsulation must be caused by viscoelastic effects, 

which was supported by some papers [5] on viscoelastic 

simulation of a bi-layer flow in the literature. In contrast, 

the simulation results presented in this paper indicate that 

the encapsulation is not caused by viscoelastic effects. 

Therefore, at this point we believe that the unbalanced 

force at the contact line where the two polymers together 

meet the die wall is the main driving force which results 

in the observed encapsulation. This unbalanced force at 

the contact line originates from the difference in the 

wettability and surface tension of the two polymers. 

 

Viscoelastic Formulation for Polymeric Flow 
To capture the viscoelastic behavior of polymers, the 

Giesekus model (Eqn. 1) [6] was employed in the current 

work.  
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where DtD iτ~ is the material derivative of iτ~ . 

Besides the constitutive equation, simulation of 

viscoelastic flow requires solving the mass and 

momentum conservation equations. Assuming a steady, 

inertia-less, isothermal, incompressible flow with no body 

force, the conservation equations for momentum and mass 

are simplified to 

 0=⋅∇ σ~  (3) 

 0=⋅∇ u
v

 (4) 

where the total stress, σ~ is given by the following 

equation 
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with p being the pressure, �� the solvent viscosity, δ
~

is the 

identity tensor, and �  is the number of modes in the 

viscoelastic constitutive equation. 

 

Numerical Scheme for Flow Simulation 
To obtain the finite element formulation of the flow 

problem, in the present work, the standard Galerkin 

method [7] was used for mass and momentum 

conservation equations (Eqns. 3 – 5). However, for 

stability of the numerical scheme, a streamline-upwind-
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Petrov-Galerkin (SUPG) method [8] was employed for the 

Giesekus constitutive equation (Eqn. 1). For additional 

stability of the numerical scheme the DEVSS method [9] 

was employed for discretization of the momentum 

equation (Eqns. 3 and 5). In DEVSS method an elliptic 

operator ( )aa ee ~~ −η2  is introduced in the momentum 

equation, where ae~  is a discrete approximation of the 

strain-rate tensor e~ , and ∑ =
=

N

i ia 1
ηη can be viewed as 

an artificial viscosity with ��  being the same as that in 

Eqn. (1). For the exact solution to the flow problem this 

additional elliptic operator is a null operator. However, in 

the DEVSS method, ae~  is explicitly determined by 

solving the following equation. 

 0=− aee ~~  (6) 

In a finite element simulation of viscoelastic flow, strain-

rate tensor is discontinuous across the element boundaries, 

whereas a continuous interpolation is used for ae~ , 

resulting in a non-zero value of the additional elliptic 

operator. In the present work, linear continuous 

interpolation over tetrahedral finite elements was used for 

ae~ . The linear interpolation over tetrahedral finite 

elements was also used for pressure and the extra stress 

tensor �� . However, for velocity, the linear continuous 

interpolation over tetrahedral finite elements was 

augmented by an extra node at the centroid of the 

tetrahedral finite element. The extra node at the centroid 

of each tetrahedral finite element is required to satisfy the 

Babuska-Brezzi stability condition [10] for the 

incompressible flow simulation. 

Coextrusion Simulation Equations 

For simulation of a multilayer flow of polymers 

during coextrusion, the velocity and stresses are required 

to be continuous across the interface between the adjacent 

polymer layers [3]. That is,       
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and )(~ 1τ are the velocities and stresses on one side of 

the interface, with )(2u
r

and )(~ 2τ being the velocities and 

stresses on the other side of the interface. Besides the 

continuity of velocity and stress, coextrusion simulation 

requires enforcement of the no-cross-flow condition at the 

interface. That is, the velocity component normal to the 

interface must be zero at every point on the interface. 

 0=⋅ nu
rr

  (9) 

where u
r

 is the velocity, and n
r

 is the unit vector 

perpendicular to the interface. 

Mesh Partitioning Technique 

In the three-dimensional simulations of coextrusion 

reported in the literature, finite element mesh is modified 

after each flow simulation iteration, such that the inter-

element boundaries coincide with the interface between 

adjacent layers of different polymers [3]. Such an 

approach using an interface-matched finite element mesh 

can only be employed for simulating a two-dimensional 

system or a simple three-dimensional system such as a 

rectangular die. For real-life coextrusion systems, with 

complex three-dimensional die channel geometry, 

repeated generation and modification of interface-matched 

finite element meshes is impractical.  

In the present work, a three-dimensional mesh of 

tetrahedral finite elements was generated over the 

complete flow channel in the die. This finite element 

mesh is not modified or regenerated at any stage during 

coextrusion simulation. Thereby, allowing simulation of 

even highly complex coextrusion systems. 

In the mesh partitioning technique which is employed 

in this work, the interface between adjacent layers of 

different polymers is represented by a surface mesh of 

linear triangular finite elements. However, the surface 

mesh of triangular elements on the interface and the three-

dimensional mesh of tetrahedral elements in the 

coextrusion die are completely independent of each other. 

This decoupling between the two finite-element meshes is 

possible because in the mesh partitioning technique for 

coextrusion simulation, the interface between adjacent 

polymer layers is not required to match with the inter-

element boundaries in the three-dimensional mesh of 

tetrahedral finite elements. Instead, in the software used in 

this work, the interface is allowed to pass through the 

interior of the tetrahedral finite elements in the three-

dimensional mesh. 

In the mesh partitioning technique for coextrusion 

simulation the tetrahedral elements which are intersected 

by the mesh of triangular elements on the interface are 

partitioned into two tetrahedral, pyramidal, or prismatic 

finite elements. Further details of the mesh partitioning 

technique are available in our earlier publications [4, 11]. 

 

Materials 
For the bi-layer flow presented in this paper, Giesekus 

model parameters given below were used for the two 

different grades of polystyrenes [5]. 

Styron 472: 

 �� = 48.4	Pa. s, �� = 1.383 × 10�	Pa. s

 �� = 2.0 × 10��	s, �� = 0.4 

Styron 678E: 

 �� = 26.4	Pa. s, �� = 5.278 × 10�	Pa. s

 �� = 1.0 × 10��	s, �� = 0.4 

The experimental data for the viscosities of the two 

polystyrenes [3], along with the fit to the experimental 

data using the Giesekus model parameters given above 

[5], is shown in Fig. 1. It is evident from Fig. 1 that the 

viscosity of Styron 472 is much higher than that of Styron 

678E. 

Bi-layer Coextrusion in a Square Channel 

One of the main motivations for including viscoelastic 

effects in coextrusion simulation in this work was to be 
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able to capture encapsulation of one polymer by another 

polymer which is often observed in polymer coextrusion. 

For instance, Karagiannis et al. [3] obtained the 

experimental data on encapsulation of Styron 472 by 

Styron 678E in a bi-layer flow in a square channel. 

Karagiannis at el. [3] observed that starting with a straight 

interface shape at the contact line, where the two 

polymers meet for the first time, Styron 678E 

progressively encapsulated Styron 472 as the two 

polymers flowed side-by-side in the square channel (Fig. 

2). However, no such encapsulation was obtained in their 

simulation of the bi-layer flow using a purely viscous 

generalized Newtonian formulation (Fig. 3). Similar 

simulation of bi-layer flow in a square channel using a 

purely viscous formulation performed in our earlier work 

[4] could not capture the encapsulation observed in 

experiments.  

It was reported by Sunwoo et al. [5] that they could 

capture the encapsulation of Styron 472 by Styron 678E 

when they included viscoelastic effects in the simulation, 

which was the main motivation for including the 

viscoelastic effects in coextrusion simulation in this work. 

Sunwoo et al. [5] reported that the predicted encapsulation 

in their simulation of the bi-layer flow was the largest and 

the closest to the experiments when a large value of the 

parameter �� = 0.4 in Eqn. 1 was used in the simulation. 

Therefore, in the present work, the same Giesekus model 

parameters with � = 0.4, as those employed by Sunwoo 

et al. for Styron 472 and Styron 678E (given above) were 

also used in the present work to simulate the bi-layer flow 

in the square channel. The simulation results thus obtained 

are presented next in this section.  

To characterize the flow, a non-dimensional shear rate 

(Deborah number, De) is defined as 

 �� =
��

�
�  (10) 

where ! is the average velocity in the square portion of 

the flow channel, " is the half of the square cross-section 

side length, and �  is characteristic relaxation time of the 

polymer at low shear rate. 
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To define the Deborah number for the bi-layer flow in the 

square channel, the average value of the characteristic 

relaxation time, � , for the two fluids employed was used.  

For the average velocity in the square channel required for 

a specified Deborah number, the appropriate value of the 

uniform velocity was specified at the entrances of the two 

polymers, whereas all components of the extra stress 

tensor were specified to be zero at the entrances. Zero 

velocity was enforced at the die walls.  

 For �� = 1, with Styron 472 in the lower layer and 

Styron 678E in the upper layer, the axial velocity 

distribution for the bi-layer flow in the square channel is 

shown in Fig. 4. Beyond �� = 1  simulation of the bi-

layer flow did not converge. Starting with the same 

uniform velocity at the entrances of the two polymers, 

after the two polymers meet the velocity slowly increases 

as the two polymers go through the converging portion of 

the channel, and the highest velocity is obtained once the 

two polymers reach the square portion of the channel. The 

velocity then remains relatively unchanged as the two 

polymers flow through the square channel 

The transverse velocity distribution due to secondary 

flow in the bi-layer coextrusion in the square channel for 

�� = 1 is shown in Fig. 5. For the bi-layer flow, in Fig. 5 

there are eight recirculating vortices. However, in contrast 

to the eight vortices in flow of a single polymer, which 

have the same size, the vortices for the bi-layer flow in 

Fig. 5 have different sizes. For instance, in Fig. 5 the two 

vortices at the bottom are significantly smaller than the 

two vortices just above the two bottom vortices. Also, in 

contrast to the vortices for flow of a single polymer, for 

the secondary flow in Fig. 5 there is no stagnation region 

in the middle of the square cross-section. Instead, near the 

center of the square cross-section the fluid from the 

bottom vortices is entering into the flow in the two 

vortices on top. 

The shape of the interface between the two polymer 

layers for �� = 1  is shown in Fig. 6 (a). The 

corresponding final shape of interface at the exit of the 

square channel is shown in Fig. 6 (c). Starting with a 

straight line interface shape at the contact line, where the 

two polymers meet for the first time, the interface in Fig. 

6 (a) starts to wave upwards near the middle and near the 

two ends with troughs in between, resulting in the W-

shaped interface at the die exit in Fig. 6 (c). In contrast to 

the wavy interface shape in Fig. 6 (a) and 6 (c), for 

�� = 0.1 in Figs. 6 (b) and 6 (d), the predicted interface 

shape just has a slight curvature but does not have a wavy 

shape. For �� = 0.1 the elastic effects in the flow, and 

hence, the secondary flow vortices are negligible, 

resulting in the simple shape of the interface which is 

similar to the interface shape obtained in a purely viscous 

simulation by Karagiannis et al. [3].  

The magnitude of the second normal stress difference, 

|��� − ���|, for the bi-layer flow for �� = 1 is shown in 

Fig. 7. The magnitude of the second normal stress 

difference, which results in the secondary flow vortices 

observed in Fig. 4, is the maximum near the middle of 

each of the four sides of square cross-section, and is zero 

near the center of the cross-section, and is also zero along 

the two diagonals of the square cross-section.  

The pressure variation for the bi-layer flow in square 

channel is shown in Fig. 8. As expected, the pressure is 

zero at the exit and increases towards the two entrances. 

Also, for the same velocity at the entrances of the two 

polymers, the pressure gradient is higher in the narrower 

feed channel of the upper layer. 

Discussion 

It should be noted that in contrast to the results 

reported by Sunwoo at el. [5], no encapsulation of Styron 

472 by Styron 678E was obtained in Figs. 6 (a) and (c). 

For encapsulation, in Figs. 6 (a) and (c) the interface 
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between the two layers should have bent downwards near 

the two walls. Instead, in Figs. 6 (a) and (c), near the two 

side walls the interface is bent upward, which is caused by 

the secondary flow vortices shown in Fig. 4. Sunwoo at el. 

[5] did not show the structure of secondary flows in their 

simulation. Therefore, it is difficult to interpret how 

Sunwoo et al. [5] could have obtained the encapsulation in 

the bi-layer flow using the Giesekus model parameters 

given in Section 3. Since encapsulation was not obtained 

for lower Deborah number in Fig. 6 (b) and (d), where the 

elastic effects are negligible, and no encapsulation was 

obtained in purely viscous simulation of the flow in the 

literature [3, 4], the encapsulation phenomena is also not 

caused solely by the difference in the viscosity of the two 

polymers.  

At this point, we believe that polymer encapsulation in 

coextrusion is a surface phenomenon, which is caused by 

the difference in the wettability (spreading tendency of the 

polymer on die surface) and surface tension of the two 

polymers used. The polymer with higher wettability is 

expected to encapsulate the other polymer during 

coextrusion. 

 

Conclusions 
The Giesekus model was used for viscoelastic 

simulation of a bi-layer flow in a square coextrusion die. 

In contrast to the findings reported in the literature, in the 

present work even with viscoelastic effects included in the 

simulation, encapsulation of a high viscosity polymer by a 

lower viscosity polymer, which is often observed in 

coextrusion experiments, could not be captured. Since the 

viscous encapsulation could not be captured with a purely 

viscous formulation in our earlier work, and similar work 

by other groups in the literature, it is concluded that 

encapsulation is not caused by viscous or viscoelastic 

effects. Instead, it is concluded that difference in 

wettability and surface tension of the two polymers is 

probably the major factor contributing to the 

encapsulation phenomenon. 
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Fig. 1  Viscosity of the two polystyrenes. 
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Fig. 2 Interface shape in the experiments. The distance 

from the square entrance is (a) 0.4 L, (b) 2.42 L, and (c) 

6.71 L, with L being the length of the side of the square 

[3]. 

 
 (a) (b) (c)  

Fig. 3 Interface shape predicted by a purely viscous 

simulation.  The distance from the square entrance is 

(a) 0, (b) 0.42 L, and (c) 2.42 L, with L being the 

length of the side of the square [3]. 
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Fig. 7 Magnitude of the second normal stress 

difference in a bi-layer flow in a square channel 

for	�� = 1.  

|τ|τ|τ|τ22 – ττττ33| (Pa) 

 
Fig. 4 Axial velocity distribution in a bi-layer flow in 

a square channel for �� = 1.   

 
 

Fig. 5 Secondary flow vortices in a bi-layer flow in a 

square channel for �� = 1. 

 

Fig. 6  Shape on the interface in a bi-layer coextrusion in a square channel. Interface shape for (a) De = 1, (b) De = 0.1. 

Interface shape at channel exit for (c) �� = 1, (d)  �� = 0.1. 

 

 
 

Fig. 8 Pressure distribution in a bi-layer flow in a 

square channel for �� = 1. 
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